
A Survey of Co-Design Ideas and Methodologies

(draft)

G. Bosman

February 26, 2003

2

Contents

1 Introduction 1
1.1 Traditional design . 2

1.1.1 Microprocessors . 2
1.1.2 Von Neumann bottleneck 2
1.1.3 Paradigm shift . 2

1.2 Other types of hardware . 2
1.2.1 Application specific integrated circuits 2
1.2.2 Programmable logic devices 3
1.2.3 New design strategy . 3

1.3 Assignment . 3
1.4 Outline of this thesis . 3

2 Background on Co-Design 5
2.1 History of Co-Design research . 5
2.2 Related work . 5
2.3 Related approaches . 5

2.3.1 Software in the loop . 6
2.3.2 Reconfigurable hardware 6
2.3.3 Adaptive computing . 6
2.3.4 Hybrid systems . 6

3 Co-Design 7
3.1 Specification and modelling . 7
3.2 Modelling approaches . 7

3.2.1 Modelling using a single IDR 8
3.2.2 Modelling using multiple IDRs 8

3.3 Validation . 9
3.4 Implementation . 9

3.4.1 Hardware/software partitioning 9
3.4.2 Conclusion . 10

4 Computational Models 11
4.1 Properties of computational models 11

4.1.1 Modelling of time . 11
4.1.2 Orientation . 12
4.1.3 Main application . 12

4.2 Example: internal combustion engine 12
4.3 Common computational models 13

i

ii CONTENTS

4.3.1 Continuous Time . 13
4.3.2 Discrete Time . 14
4.3.3 Discrete-Event . 15
4.3.4 (Co-Design) Finite-State Machines 15
4.3.5 Kahn Process Networks 16
4.3.6 Asynchronous Data Flow 16
4.3.7 Synchronous Data Flow 17
4.3.8 Petri Nets . 17
4.3.9 Rendez-vous . 18
4.3.10 Synchronous/Reactive . 18

4.4 Comparison . 18

5 Requirements for Co-Design methodologies 20
5.1 Paradigm shift . 20
5.2 Design-space exploration . 21
5.3 Target architecture . 21
5.4 Dealing with complexity . 22

5.4.1 Abstraction . 22
5.4.2 Hierarchy . 23

5.5 Continuity gap . 23
5.5.1 Partitioning . 23
5.5.2 Implementation . 23

5.6 Varea’s taxonomy . 24
5.7 Conclusion . 24

6 Co-Design methodologies 26
6.1 Ptolemy II . 26
6.2 COSYMA . 27
6.3 ForSyDe . 28
6.4 Polis . 28
6.5 VULCAN . 29
6.6 Solar/Music . 29
6.7 SpecC . 29
6.8 SystemC . 29

6.8.1 SpecC vs. SystemC . 29
6.9 FunState/SPI Workbench . 29
6.10 Comparison . 30

7 Conclusions 32
7.1 Internal design representation . 32
7.2 Co-Design approaches . 32
7.3 Roadmap . 33

A Vocabulary 38

Chapter 1

Introduction

Designing embedded systems becomes more and more complex due to the in-
creasing size of integrated circuits, increasing software complexity and decreas-
ing time-to-market requirements and product costs. This ongoing increasing
complexity of embedded systems motivates the search for a high-level system
design approach at Chess. A high-level system design notation could also offer
substantial performance benefits as there can be a smarter partitioning of the
system’s parts onto hardware and software. High-level system design is cur-
rently a major academic research area world-wide and it is strongly rooted in
traditional areas such as control theory and digital design theory. For Chess
such a design approach could mean a faster and better design process. This
paper investigates aspects of high-level system design and the current state of
the art in existing tools and methods that allow high-level system design. It
will provide input for the Chess design strategy for the following years.

A system design notation should allow reasoning at a high level of abstrac-
tion. However, to be useful it must also be possible to synthesis hardware and
software. Questions like how to divide the functionality of the system into hard-
ware and software are a very important aspect of this synthesis. Traditionally
the choice what to implement in hardware and what to implement in software is
made early in the design process. Both parts are then made in separate tracks
by separate design teams.

When the emphasis lies on the hardware-software partitioning problem,
system-level design methods are also called “Co-Design” methods. These terms
are often used mixed; in this paper Co-Design will be mainly used.

The goal of Co-Design is to explore the whole design-space to be able to
make well-informed critical design decisions. This would lead to a more optimal
partitioning and more flexibility in the process from design to implementation.
To really understand the improvement a high-level system design paradigm
makes it is important to see how traditional system design works and what that
approach lacks.

1

2 CHAPTER 1. INTRODUCTION

1.1 Traditional design

1.1.1 Microprocessors

Traditionally complex embedded systems are designed around a microprocessor
in a Von Neumann architecture. A Von Neumann system is fundamentally a
sequential system. There is heavy optimalisation inside the CPU itself (for
instance using pipelining) but ultimately the commands are executed one at a
time. Systems based on microprocessors have several benefits. Microprocessors
are very well optimized and they allow design of families of products that can be
built. Such a family of products can provide various feature sets at a different
price point and can be extended to keep up with rapidly changing markets[43].

1.1.2 Von Neumann bottleneck

However, the fact that each command is executed sequentially leads to a fun-
damental limitation. Backus calls this the “Von Neumann bottleneck”[2]. He
points out that this bottleneck is not only a physical limitation, but has also
been an “intellectual bottleneck” in limiting the way we think about computa-
tion and how to program.

1.1.3 Paradigm shift

[Guus: explain difference between hardware and software as related to concur-
rency.] This same aspect is a major motivation for Chess to do this investiga-
tion: how to prevent the ’paradigm-shift’ that often occurs in designing systems.
[Guus: this paragraph should be better. Explain more what the paradigm shift
is.]

1.2 Other types of hardware

1.2.1 Application specific integrated circuits

Not all embedded systems are designed around microprocessors. It is possible
to design embedded chips that compute in a parallel way. Application Specific
Integrated Circuits (ASICs) are specialized chips that are used for example to
implement encryption algorithms. They are similar to processors in the sense
that they are also ‘hardwired’ solutions. It is very expensive to design an ASIC,
and the design is a time-consuming process. Therefore, customizing an ASIC
for a single application is only feasible when the project is reasonably large.
In any case an ASIC can only be produced when the layout is final: it is not
possible to experiment with the layout and try several versions.

Although you’ll loose the optimalizations found in microprocessors there
is a huge potential gain when designing hardware that is parallel in nature
because the layout of the hardware can then be tailored exactly to the functional
requirements. This can be extremely profitable, especially when the problem
to be solved is mainly parallel in character. ASICs are therefore often used in
areas such as compression or encryption which are parallel ‘in nature’.

1.3. ASSIGNMENT 3

An important motivation for the rising interest in Co-Design is the intro-
duction of another type of chip that is much more flexible than ASICs: pro-
grammable logic devices.

1.2.2 Programmable logic devices

Programmable Logic Devices (PLDs) are computer chips that can be pro-
grammed to implement circuits requiring both combinational and sequential
logic. Reconfigurable logic devices are a class of programmable logic devices
that may be reprogrammed as often as desired. A type of reconfigurable logic
devices that are becoming very popular[10] are Field Programmable Gate Arrays
(FPGAs). Three direct benefits of the reconfigurable approach can be recog-
nized: specialization, reconfigurability and parallelism[36] [Guus: use more of
Tessier on future developments [36]].

1.2.3 New design strategy

FPGA’s shorten the development cycle dramatically and are much cheaper to
use than ASICs. This allowed research in Co-Design to increase a lot. It also
made researchers consider more fine-grained approaches.

Early approaches in Co-Design started with components of high granularity,
such as ASICs and microprocessors. Today parts of the hardware are designed
from scratch on a FPGA in combination with microprocessor and ASICs. This
allows the system to benefit from both the microprocessor’s specialization and
the parallelism offered by the FPGA and ASICs. This difference in granularity
is an important feature to discriminate on various Co-Design approaches.

Obviously designing hardware and software for a system in an integral man-
ner is an extremely complex task with many aspects. There is a wide range of
architectures and design methods, so the hardware/software Co-Design problem
is treated in many different ways.

1.3 Assignment

“To survey development methods and to investigate how an integrated approach
of hardware-software design can improve system development at Chess.”

The focus in this paper will be on the shift of paradigms when traversing
through the various levels of detail.

1.4 Outline of this thesis

In Chapter 3 we’ll look into the field of Co-Design and the problems it tries
to solve. In Chapter 3.2 different types of Co-Design approaches are described,
and the classifications that can be made. It turns out that the paradigms, the
computational models, are very important to understand the design strategy
to use and they are directly related to the paradigm shift. Therefore Chapter
4 describes computational models that are commonly used to model (parts of)
systems.

A single paradigm approach has serious disadvantages so various models
that allows a mixture of 2 or more computational models have been proposed

4 CHAPTER 1. INTRODUCTION

in literature. In Chapter 5 the various aspects of system-level modelling will be
discussed. This Chapter will serve as a guide for Chess in assessment of future
developments and it Chapter 6 a number of existing projects and models will
be described and analyzed using the classifications and ideas found in the first
part.

Chapter 2

Background on Co-Design

This chapter describes the field of Co-Design.

2.1 History of Co-Design research

The field of Co-Design is about 10 years old now. [Guus: about Gupta paper
etc]

In 1998 a paper was published that described a method to synthesize code
for both hardware and software, for a specific type of data-flow programs[12].

2.2 Related work

• The SAVE project of the Linköping University in Sweden did a survey on
Co-Design representation models in 1999[8].

• At the Leiden University in the Netherlands a survey was done comparing
8 tools and their underlying methodologies[42].

• O’Nils presented ComSys, an approach to the generation of interfaces
between application software and hardware IP components. In his PhD
thesis from 1999 he reviewed several Co-Design methods[31].

• Some authors made an broad overview of various Co-Design development
methods, e.g. [44], [16].

• Edward Lee wrote a very readable introduction to the field of Embedded
Software and various computational models[22] and how it is different from
traditional computer science areas.

2.3 Related approaches

A number of areas that are related to Co-Design have been researched.

5

6 CHAPTER 2. BACKGROUND ON CO-DESIGN

2.3.1 Software in the loop

Some of the issues Co-Design tries to solve are also handled by ’Software-In-The-
Loop’. This is developing software in a virtual hardware environment. Although
this easies the design of software for hardware it does not allow the full improve-
ments made possible by Co-Design because the partitioning between hardware
and software is not flexible. Within Chess the SHAM has been developed. This
is a device (a printed circuit board) that allows software testing for onboard
software[39].

2.3.2 Reconfigurable hardware

Reconfigurable systems exploit FPGA technology, so that they can be person-
alized after manufacturing to fit a specific application.

“A promise of reconfigurable hardware is that it should allow the logic and
memory resources in a chip to be used more efficiently, especially in applications
that need massive computing power. But there is a further commercial advan-
tage. It could turn finished products into a source of service revenue. Imagine a
music player that includes programmable logic. When a new music-compression
format emerges to replace MP3, owners of the player could download, for a fee,
a new decompression algorithm for their player from the maker’s website”[37].

[Guus: Add reference to Viales or ITA project here (reconfigurable parts),
or SHAM.]

The operation of reconfigurable systems can either involve a configuration
phase followed by an execution phase or have concurrent (partial) configura-
tion and execution.[27]. The major problem in this type of systems consists of
identifying the critical segments of the software programs and compiling them
efficiently to run on the programmable hardware. This is a different field and
will not be treated in this thesis.

2.3.3 Adaptive computing

The field of adaptive computation is closely related to reconfigurable hardware.
According to Neema the primary challenge of the Adaptive Computing approach
is in system design[29].

2.3.4 Hybrid systems

Most traditional Co-Design methods explore ways of modelling digital systems.
Embedded systems however, often interact with an analog environment. Tradi-
tionally, this is the domain of control theory and defined in the digital domain.
Because of the way models are often treated (digital) the analog environment is
often translated to a digital representation by computer scientists. This trans-
lation is not trivial but must be done very carefully otherwise it’s not possible
to formally verify guarantee safety and/or performance of the embedded device.

To address this issue hybrid embedded system models have been designed[1,
35]. The issues that Co-Design faces, such as combining various models of
computations and making sure properties are valid throughout the whole design
phase, can of course also be found in this hybrid system modelling.

Chapter 3

Co-Design

Co-Design is “A design methodology supporting the concurrent development of
hardware and software in order to achieve system functionality and performance
goals. In particular, Co-Design often refers to design activities prior to the
partitioning into Hardware and Software and the activity of design partitioning
itself.”[41]

The Co-Design process for embedded systems includes specification, mod-
elling, validation, and implementation[27]. To comprehend the benefits of vari-
ous Co-Design technologies it is important to understand how the design process
works. This process is the subject of this chapter.

3.1 Specification and modelling

Modelling is the process of conceptualizing and refining the specification. A
specification undergoes a manual synthesis process that generates a model of an
implementation. The result of the modelling phase is a model, which is specified
in an Internal Design Representation (IDR)[16].

That model may contain multiple models of computation and there is a
trade-off between scalability and expressiveness in this IDR[40].

Modelling in the context of Co-Design is sometimes called cospecification.

3.2 Modelling approaches

Hardware/software Co-Design of embedded systems can be differentiated in sev-
eral ways. This thesis will distinguish approaches in the difference between the
internal design representation. If there is a single IDR that is used through-
out the development process, we’ll call it a homogeneous modelling. Otherwise,
when multiple IDRs are we’ll call the approach heterogeneous.

Another possibility is to consider the number of system-level specification
language. Mooney et. al. make this distinction: if a method has only a sin-
gle specification language they’ll call it a homogeneous approach, otherwise a
heterogeneous approach [28]. I believe this is a bit to superficial, as very often
multiple specification languages can be used in the beginning of the specification
process that are then mapped in one Internal Design Representation.

7

8 CHAPTER 3. CO-DESIGN

3.2.1 Modelling using a single IDR

Co-design starts with a global specification given in either a single language
or in multiple languages that are converted into one IDR. This IDR should be
independent of the future implementation and of the partitioning of the system
into hardware and software parts. In this case Co-Design includes a partitioning
step aimed to split this model into hardware and software. The outcome is
an architecture made of hardware processors and software processors. This is
generally called a virtual prototype and may be given in a single language or
different languages[16].

This approaches is called compositional by Mooney, Coste[9]. It aims at
integrating the partial specification of sub-systems into a unified representation
which is used for the verification and design of the global behavior.

Many researchers are doubting whether a grand unified approach will work.
Specifically the group of Edward A. Lee (who created the Ptolemy system)
has doubt about this[6]. He calls modelling using a single IDR the ’grand
unified method’ [21]. In order to be sufficiently rich to encompass the varied
computational models of the competing approaches. They become unwieldy,
too complex for formal analysis and high quality synthesis. Lee sees it as a big
problem that a homogenous approach is based on a single IDR. This IDR would
impose a model of computation which might be good for a subset of systems
but bad for others[21].

Examples of homogeneous methods are Polis, COSYMA and SpecC.

3.2.2 Modelling using multiple IDRs

Lee states that generality can be achieved through heterogeneity, where explicit
more than one model of computation is used. Coste calls this the co-simulation
based approach[9].

Heterogenous modelling allows the use of separate languages for the hard-
ware and software parts. The Co-Design starts with a virtual prototype where
the hardware/software partitioning is already made for the biggest part. This a
fundamental difference with the homogeneous approach. Here the emphasis is
on the integral designing of the parts to make sure that the overall system has
the required properties. The key issues are validation and interfacing [16]. A
lot of research is done on the integration of different system parts that enables
system optimization across language boundaries.

The co-simulation-based approach consists in interconnecting the design en-
vironments associated to each of the partial specifications. Like its name sug-
gests, with co-simulation the software processors and the hardware processors
of an system and their interactions are simulated in one simulation. It does
not provide such a deep integration as compositioning does [stelling, leg uit].
However it does allow for modular design. Communication is between the pro-
cessors would typically be implented using a cosimulation bus which is in charge
of transferring data between the different simulators. [Guus: include remark
busses].

Sometimes cosimulation is used to simulate the behavior of a system con-
sisting of 2 models: the hardware and the software, and sometime it is used to
model on a more abstract level where the hardware vs software decision has not
been made yet. [Hmm. Strijdig met hierboven!] A typical example of such a

3.3. VALIDATION 9

co-simulation approach is Ptolemy II.

3.3 Validation

The validation process a design model should give the designer a reasonable
level of confidence about how much of the original embedded system design
will be in fact be reflected in the final implementation[40]. There has been a
lot of research in the simulation of heterogeneous hardware/software systems
[6, 20, 40]. There are 3 three methods for validation:

1. Simulation

2. Prototyping

3. Formal Verification

Formal verification allows for a more thorough evaluation of the embedded
system behavior (maximum behavioral coverage) by means of logics.

It is good to note that in simulation the hardware is often simulated (al-
though often not real-time, as it’s just a simulation). However there has also
been some research in replacing the hardware simulator with an FPGA (or
multiple FPGAs) that simulate the real target hardware[20].

3.4 Implementation

The model found throughout the modelling phase has to be implemented into
hardware and software. It is an important notion in a Co-Design approach that
there must be no continuity problem. That is: the steps from model to the
synthesis should be all in the design process[34].

In the implementation phase architectural information is taken into account.
Varea[40] calls this a merger between the IDR and the technology library. It is
important that the intermediate IDR or specification is not too much influenced
by the current target technology. Steps in the implementation phase include:

1. Hardware/Software partitioning

2. Synthesis of the code for software and hardware

3.4.1 Hardware/software partitioning

’The partition of a system into hardware and software is of critical importance
because it has a huge impact on the unit costs and performance characteristics of
the final design. In the case of embedded systems, a hardware/software partition
represents a physical partition of system functionality into application-specific
hardware and software executing on one (or more) processor(s).’[27].

Obviously is important to look at the architectural organization of the sys-
tem. Although it is possible to generate a complete system using only FPGA’s,
it is very common to use a combination of 1 (or more) processors with dedicated
hardware or with flexible hardware (FPGAs). This is called coprocessing [27]

On the lowest level, FPGA’s can be used to implement SM’s, datapaths
and nearly any digital circuit. The outcome of the synthesis process is a final
implementation of the embedded system.

10 CHAPTER 3. CO-DESIGN

3.4.2 Conclusion

The discussion of homogeneous vs. heterogeneous modelling and about IDRs is
related to the fact that a particular IDR has an area of application to which it
fits best.

The following chapter gives a rationale about this phenomena.

Chapter 4

Computational Models

Modelling is at the heart of all development methods. All Co-Design systems are
based on a computational model, or combine a few of them. The computational
models can be found in the Internal Representation Language. In this Chapter
common computational models are described and compared. In Chapter 4.2 a
running example is introduced.

A computational model is a formal, abstract definition of a computer. It de-
scribes the components in a system and how they communicate and execute[25].

4.1 Properties of computational models

There are three characteric properties of computational models important for
system design:

1. Modelling of time

2. Orientation

3. Main application

4.1.1 Modelling of time

An essential difference between concurrent models of computation is their mod-
elling of time. [21] (page 11). Lui[24] states that the different notions of time
make programming of embedded systems significantly different from program-
ming in desktop, enterprize or Internet applications. Lee[23] proposed a math-
ematical framework to compare certain properties of models of computation.
This allows for a precise definition of the various computational models. Time
modelling alternatives are:

• continuous time, real numbers are taken as time-axes (see 4.3.1)

• discrete time, there’s a global clocktick

• partial ordered time, events are ordered

• No explicit notion of time

11

12 CHAPTER 4. COMPUTATIONAL MODELS

4.1.2 Orientation

Gupta distinguises five categories of models.[14]:

• State-oriented

• Activity-oriented

• Structural-oriented

• Data-oriented

• Heterogeneous

4.1.3 Main application

Fundamental to embedded software is the notion of concurrency. There is a lot
of research done on compiling concurrent languages into sequential code that
can be run on a microprocessor, see for example [17]. For this thesis however it
is more interesting to see what happens when this paradigm-shift does not have
to be made.

There are models that are designed to describe dataflow oriented systems (ie
DSPs) and there are models more suitable for control-flow systems.However this
approach lacks generality as most systems are not easily put in either one cate-
gory. It should be noted that the difference between a control-flow or data-flow
oriented computational model is important for both control and data-oriented
systems. Many control-systems use complex sensors or subsystems such as im-
age processing algorithms that are best specified using a type of data-oriented
computational model[25].

4.2 Example: internal combustion engine

A good illustration of the need for multiple computational models can be found
in [24]:

A cylinder of an internal combustion engine has four working phases: intake,
compress, explode, and exhaust. The engine generates torque that drives the
power train and the car body. Depending on the car body dynamics, the fuel
and air supply, and the spark signal timing, the engine works at different speeds,
and thus makes phase transitions at various time transitions. The job of the
engine controller is to control the fuel and air supplies as well as the spark signal
timing, corresponding to the drivers demand and available sensor information
from the engine and the car body.

The engine and the car body in this example are mechanical systems, which
are naturally modelled using differential equations. The four phases of the
engine can be modelled as a finite state machine, with a more detailed continuous
dynamics for the engine in each of the phases. While all the mechanical parts
interact in a continuous-time style, the embedded controller,. which may be
implemented by some hardware and software, works discretely.

Additionally, sensor information and driver’s demands may arrive through
some kind of network. The controller receives this information, computers the

4.3. COMMON COMPUTATIONAL MODELS 13

Figure 4.1: An internal combustion engine is made up of several parts that
should be modelled by different MoCs. Adopted from Liu[24].

control law, controls the air and fuel values, and produces spark signals, dis-
cretely. So, we want to use a model that is suitable for handling discrete events
for the network and the controller.

In this very common example, we have seen both continuous-time models
and several discrete models: finite state-machines, discrete events, and real-time
scheduling.

4.3 Common computational models

4.3.1 Continuous Time

As we saw above a computational model describes components and their interac-

Time Continuous,
global

Based on -
Synchronous? -
Main app. Mechanical

parts

tions. Embedded systems often contain components that can best be described
using differential equations. Differential equations describe the rate at which
variables change. They are often used to model (electro-)mechanical dynamics,
analog circuits, chemical processes and many other physical systems[13].

In our car controller example of Chapter 4.2 the mechanical behavior of the
engine and the car body are good candidates of components that can well be
described using differential equations. Mechanical systems are often described
using large number of difference equations, that can be hard to understand. In
[30] a relatively easy example is given. It shows how mechanical interactions
quickly lead to differentail equations (thus to a continuous model).

In Picture 4.3.1 the chassis of a car is depicted and how it’s connected to
the road with a spring and damper. The interaction of these 3 physical forces
(gravity, the spring and the damper) lead to a differential equation (Equation
4.1).

d2

dt2
y(t) +

kd

m

d

dt
y(t) +

ks

m
y(t) = g +

kd

m

d

dt
u(t) +

ks

m
u(t) (4.1)

14 CHAPTER 4. COMPUTATIONAL MODELS

Figure 4.2: Forces on a car shock absorber that result in a differential equation
relationship between road height signal u(t) and the car height signal y(t) [30].

This differential equation gives a relationship between the road-height and the
car-height. For an embedded car-control system this can be important informa-
tion; for example to slow down the car when the shocks are getting bigger.

Fundamental to this computational model is that it uses real numbers as
time model – that’s why this model is called continuous time. Formally said:
“continuous-time systems are active over the entire time axis processing their
input and producing output”.[35]. The ‘execution’ of a continuous time models
mean that a so-called fixed point must be found by the execution environment.
This means that a set of functions of time must be found that satisfy all the rela-
tions. Hybrid systems (see Chapter 2.3.4) specifically deal with the integration
of these type of Computational Models with others.

4.3.2 Discrete Time

Difference Equations are a discrete counterpart of differential equations. Where

Time Discrete,
global

Based on -
Synchronous? -
Main app. Filters,

periodically
sampled
data

the latter works in the continuous time difference equations are discrete time
based. Discrete-time systems can only react to their input and produce new
output at distinct, equidistant time instances [35]. Difference equations are often
rearranged as a recursive formula so that a systems output can be computed
from the input signal and past outputs. Difference equations are commonly used
for modelling filters (that manipulate sound) and periodically sampled data
streams. They can been seen as discretized version of differential equations.

4.3. COMMON COMPUTATIONAL MODELS 15

4.3.3 Discrete-Event

In a discrete-event system, modules react to event that occurs at a given time

Time Sorted
events,
global

Based on -
Synchronous? -
Main app. -

instant and produce other events either at the same time instant or at some
future time instant. Execution is chronological[6]; time is an integral part of the
model. Events will typically carry a time stamp, which is an indicator of the
time at which the event occurs within the model. A simulator for Discrete-Event
models will typically maintain a global event queue that sorts events by time
stamp. This sorting can be computationally costly. [Guus: hard to simulate,
nice in hardware].

4.3.4 (Co-Design) Finite-State Machines

The finite-state machine model has been widely used in control theory and
is the foundation for the development of several models for control-dominated
embedded systems. The classical Finite State Machine (FSM) consists of a set
of states, a set of inputs, a set of outputs, a function which defines the outputs
in terms of input and states and a next-state function.[8].

FSMs model systems where the system at any given point in time can exist

Time Events
with time-
stamp

Based on State
Synchronous? No
Main app. Control-

parts

in one of finitely many unique states. This makes them excellent for control
logic in embedded systems. They can very well be formally analyzed and it is
relatively straightforward to synthesis code from this model[21].

FSM can be visualized very well using a state transition graph (see Figure
4.3.4). FSM have a number of weaknesses. They are not very expressive, and the

Figure 4.3: A state transition graph.

number of states can get very large even in the face of only modest complexity. Is
intended for control-oriented systems with relatively low algorithmic complexity.

Extensions of the FSM

A number of variations has been proposed to overcome to weaknesses of the
classical FSM model. Using FSMs in a hierarchical model was first made popular
by Harel[25]. He proposed StateCharts, which combine hierarchical FSMs and
concurrency. Statecharts are essentially a combination of FSMs with a SR. The
tools Statemate from Ilogix uses statecharts as its control specification model.

In cases when a FSM must represent integer or floating-point numbers, a
state explosion problem could be encountered. If each possible value for a
number requires a state, the FSM could require a enormous amount of states.
This can be solved by introducing a data-path to the FSM. This solution was
described by Gaiski[14]; it could be used for computation-dominated systems.

16 CHAPTER 4. COMPUTATIONAL MODELS

Figure 4.4: Hierarchical concurrent states[14].

An obvious extension to the FSM would be the addition of concurrency
and hierarchy. Such a system is then called a Hierarchical Concurrent FSM
(HCFSM). Like the FSM, the HCFSM models consists of a set of states and
transitions. However, each state of the HCFSM can be further decomposed into
a set of substates, thus modelling hierarchy. Each state can also be decomposed
into concurrent substates which execute in parallel and communicate through
global variables. An example can be seen in picture 4.3.4. State Y is decomposed
in two concurrent states, A and D. The bold dots in the figure show when the
starting point of the states are.

Perhaps the most successful extension to the classical FSM is the Co-Design
Finite State Machine (CSFM) which is used in Polis. In Chapter 6.4 we’ll see
more about this. Important in this extension is the hierarchy and concurrency
that are added. The communication primitive in the CSFM system is the event.
The behavior of the system is defined as sequences of events that can be observed
when interact with the environment [8]. The notion of time in this model is thus:
events with a time-stamp (ordered time).

4.3.5 Kahn Process Networks

In a process network model of computation the arcs represent sequences of data

Time No explicit
timing

Based on Activity
Synchronous? No
Main app. Digital

signal
processing

values (token) and the bubbles represent functions that map input sequences
into output sequences. Certain technical restriction are necessary to ensure
determinacy.[21].

4.3.6 Asynchronous Data Flow

It is a common representation formalism for modeling algorithms. The graph

Time No explicit
timing

Based on Activity
Synchronous? No
Main app. Digital

signal
processing

representation can be interpreted asynchronous (ADF) or synchronous (SDF).
[Guus: uitwerken wat voor soort data-flow modellen er allemaal bestaan; split
it into two?]

4.3. COMMON COMPUTATIONAL MODELS 17

Figure 4.5: A dataflow graph for (a ∗ b) + (c/d)−
√

(e mod f).

4.3.7 Synchronous Data Flow Time No explicit
timing

Based on Activity
Synchronous? Yes
Main app. Digital

signal
processing4.3.8 Petri Nets

Figure 4.6: Petri net representing: (a) sequential order, (b) branching, (c) syn-
chronization, (d) resource contention and (e) concurrency[14].

A Petri net is a well-known graphical and mathematical modeling tool. The

Time Order of
transitions

Based on State
Synchronous? No
Main app. -

Petri-Net is a state-oriented model. In the classical approach a Petri net is
composed of 4 basic elements: a set of places, a set of transition, an input
function that maps transitions to places, and an output function which is also
a mapping from transition to places.

A Petri net executes by mean of firing transitions. A transition can fire only
if it is enabled – that is, if each of its input places has at least one token.

18 CHAPTER 4. COMPUTATIONAL MODELS

Two important features of Petri nets are its concurrency and asynchronous
nature.[8], this can be modelled quite naturally as seen in Picture 4.3.8.

4.3.9 Rendez-vous

In a rendezvous model, the arcs represent sequences of atomic exchanges of

Time Atomic
events on
timeline

Based on -
Synchronous? No
Main app. -

data between sequential processes, and the bubbles presents the processes. [21].
Examples are Hoare’s CSP and Milner’s CCS. This model of computation has
been realized in a number of concurrent languages, like Lotos and Occam. [Guus:
based on algebra? How is timing handled?]

4.3.10 Synchronous/Reactive

In synchronous languages, modules simultaneously react to a set of input events

Time No explicit
timing

Based on -
Synchronous? Yes
Main app. Reactive

real-time

and instantaneously produce output events. If cyclic dependencies are allowed,
then execution involves finding a fixed point, or a consistent value for all events
at a given time instant.[6]

Very often real-time systems are specified by means of concurrent processes,
which communicate asynchronously [33].

The synchrony hypothesis forms the base for the family of synchronous lan-
guages. It assumes, that the outputs of a systems are synchronized with the
system inputs, while the reaction of the system takes no observable time. So
time is abstracted away. The synchrony hypothesis abstracts from physical time
and serves as a base of a mathematical formalism. All synchronous languages
are defined formally and system models are deterministic.

’In synchronous languages, every signal is conceptually (or explicitly) ac-
companied by a clock signal. The clock signal has meaning relative to other
clock signals. It defines the global ordering or events. Thus, when comparing
two signals, the associated clock signals indicate which events are simultane-
ous and which precede or follow others. A clock calculus allows a compiler to
reason about these ordering relationships and to detect inconsistencies in the
definition.’[6].

4.4 Comparison

Three important characteristics have been described in Table 4.4. It shows
that there are a number of computational models suitable for digital signal
processing (the dataflow and process networks). Others are suitable mainly for
control-oriented work. This indicates that for a real system various MoCs are
necessary. Experience also suggest that several MoCs are required for the design
of a complete system[6].

Because of the very different notions of time (from continuous time to no
time-notion at all) in the various MoC’s, integrating them is by no means trivial.
This is one of the problems Co-Design approaches must solve before they’re
usable in system-design. In the next chapter various problems will be analyzed.

4.4. COMPARISON 19

Table 4.1: The main characteristics of the models of computation described in
this Chapter.

Computational model Time Orientation Modus Main application
Continuous Time Continuous,

global notion of
time.

? ? Continuous con-
trol laws, analog
circuits

Discrete Time Global notion of
time. Every signal
has a value at ev-
ery clock tick[25]

? ? Periodically sam-
pled data systems,
cycle accurate
modelling

Discrete-Event Globally sorted
events with time
tag

? ? ?

(Co-Design) Finite
State Machinea

Events with time-
stamp

State-based Asynchronous Control-parts

Kahn Process Net-
works

No explicit timing ? Asynchronous Digital Signal
Processing

SDF No explicit timing ? Synchronous Digital Signal
Processing

ADF No explicit timing ? Asynchronous Digital Signal
Processing

Petri Nets No explicit tim-
ing. Just order of
transitions[8]

State-based Asynchronous ?

Rendez-vous Atomic events
along line of
time[8]

? Asynchronous ?

Synchronous/Reactive No explicit timing ? Synchronous Reactive real-time

aThe Codesign Finite State Machine is chosen as a representative because the
basic FSM is not sophisticated enough to be used as a Model of Computation
(see 4.3.4).

Chapter 5

Requirements for
Co-Design methodologies

In this chapter requirement for usable Co-Design methods are discussed. The
result of this Chapter is a list of requirements and important aspect of Co-Design
methodologies.

5.1 Paradigm shift

It has been recognized in literature that there is an important relationship be-
tween the model of computation and the target-architecture. Kienhuis et al.[19]
speak in this context about a mapping between a model of computation and the
architecture: “In mapping we say that a natural fit exist if the model of com-
putation used to specify applications matches the model of architecture used to
specify architectures and that the data types used in both models are similar.”
This concept of a natural fit is the same concept of preventing a paradigm shift;How to deal with the

interaction between various
MoCs.

when there is a natural fit between the IDR, the target architecture and the
problem then there is no paradigm shift. This concept is thus recognized by
the research community. However, a question they are still facing is: how to
integrate these various models of computation. As we saw in Chapter 3 there
are basically two approaches:

• Compositional

• Co-simulation based

The main difference in the two approaches in my view is that the co-simulation
approach allows for more MoCs in a system and are better capable of working
with optionally new developed MoCs. The other option promises a closer inte-
gration. This relates to the conventional wisdom that high performance while
minimizing resources needed (or time needed) can be obtained by matching the
architecture to the algorithm[29].

20

5.2. DESIGN-SPACE EXPLORATION 21

5.2 Design-space exploration

Many parts in the design of embedded systems require manual decisions. This
remains so when using Co-Design methods. The integration Co-Design offers is
valuable because of validation and easier synthesis of code from a model that
allows hard- and software to be generated. Is there a possibility of

design-space exploration in the
approach?

Because of the complexity of most systems, optimal manual decisions are
sometimes not feasible. There are simply too many possibilities to consider. To
use all of the potential improvements that a later HW/SW partition decision al-
lows, it is therefore very important to reduce the user decisions as far as possible.
This has been recognized and there are various methods for systematic design
space exploration [5]. “In order to perform rigorous analysis and synthesis it is
essential to prune the design space retaining only the most viable alternatives.”
In the past heuristics have been used to prune large design spaces. However, due
to the complex behavior and interactions in multi-modal systems it is difficult
to come up with effective heuristics. A better approach is to use constraints to
explore and prune the design spaces; constraint satisfaction can eliminate the
designs that do not meet the constraints. The pruned design space contains
only the designs that are correct with respect to the applied constraints. These
designs can then be simulated, synthesized and tested.”[29].

5.3 Target architecture

When a Co-Design methodology allows for the generation of both software and
hardware, it must also generate the communication mechanisms between these
two parts. This include the operating system perhaps, and the device drivers of
some sort.

O’Nils point out that very often off-the-shelf IP components are used in Does the approach allow IP
reuse?system design, and that often a major part of the work will be in interfacing

these IP components. Tools like Polis are primarily designed for cases in which
the whole design functionality is captured within the tools environment and
communication refined during system synthesis. That is, the device drivers
are generated together with the custom hardware and the operating system.
However, if users want tot use IP blocks and off-the-shelf operating systems they
will face the same problems that occur in manual design[31]. This has important
implications for the commercial use of Co-Design methods and design space
exploration tools: if they don’t take into account off-the-shelf IP components
they are not suitable for many types of projects.

An useful extension to most Co-Design approaches would be an explicit map- What type of target
architectures are supported?ping between the IDR and the target architecture. Keutzer et al. state: “We

actually believe that worrying about HW-SW boundaries without considering
higher levels of abstraction is the wrong approach. HW/SW design and ver-
ification happens after some essential decisions have been already made, and
this is what makes the verification and the synthesis problem hard. SW is re-
ally the form that a behavior is taking if it is “mapped” into a programmable
microprocessor or DSP. [...] The origin of HW and SW is in behavior that the
system must implement”[18]. If this mapping is recognized together and used in
design-space exploration, a typical approach would be the Y-Chart1 as proposed

1This term is rather unfortunate, as there exists another Y-Chart in Co-Design. That one

22 CHAPTER 5. REQUIREMENTS FOR CO-DESIGN METHODOLOGIES

Figure 5.1: The Y-Chart approach[19].

by Kienhuis[19] (see Figure 5.3). [Guus: describe Y-Chart approach.]

5.4 Dealing with complexity

5.4.1 Abstraction

It is obvious that low-level languages such as VHDL are able to implement differ-
ent models of computation. An imperative language can be used to implement
for example a dataflow MoC[6].

However, lack of abstraction disqualifies low-level languages as candidates
for modelling combined computational model-systems because it leaves pro-
grammers no freedom to make trade-offs between programmability, utilization
of resources and silicon area. It’s common for a specification language to allow
more than 1 model of computation. However this does not always mean that
this allows for suitable high-level mixture of 2 models.

A goal of all design methods is to allow systems to be designed on a higher
level than the implementation level. The ultimate goal is to allow a very high-
level design, that then automatically can be converted into the implementation
level. This is a fundamental notion in computer science. Examples are program-
ming languages, that allow humans to reason about variables or flow-of-control
on a much higher level than machine code allows. There has also been a lot of re-
search into finding languages to design hardware from a higher level. Nowadays
it is very common to use a language as VHDL to define hardware. There are
compilers available to generate netlists (hardware descriptions) from languages
like VHDL. Although VHDL is probably considered by software engineers to be
low-level, it is a major step forward compared to the arcane art of programming
cells and gates directly.

This looking for a higher level of abstraction is an ongoing quest, and asWhat is the abstraction level
used in the methodology? so it can also be found in Co-Design methods. Ultimately the goal is to be

able to design a system in a textual or graphical way, in such a manner that

relates to the level of abstraction of a system [Guus: a bit sharper!]

5.5. CONTINUITY GAP 23

there will be an automatic compiler from this high-level representation into
the implementation level: hardware, software or (often) a combination of both.
Sometimes such an approach is called model compilation[34].

A higher level of abstraction in modelling decreases the gap between func-
tional requirements of a system and the modelling process, leading to a better
fit between these.

5.4.2 Hierarchy

’Brute-force composition of heterogeneous models may cause emergent behav-
ior. Model behavior is emergent if it is caused by the interaction between
characteristics of different formal models and was not intended by the model
designer.’[13]

A common way to prevent unwanted emergent behavior is isolating various Does the method support
hierarchical behavior
modelling?

subcomponents and letting these subcomponents work together in a hierarchical
way. Hierarchical in the sense of a containment relation, where an aggregation
of components can be treated as a (composite) component at a higher level.
In general, hierarchies help manage the complexity of a model by information
hiding – to make the aggregation details invisible from the outside and thus a
model can be more modularized and understandable[24].

“Note that in Ptolemy, models of computations are mixed hierarchically.
This means that two MoC’s do no interacts as peers. Instead, a foreign MoC
may appear inside a process. In the old version of Ptolemy, such a process is
called a wormhole. It encapsulates a subsystem specified using one MoC within
a system specified using another. The wormhole must obey the semantics of
the outer MoC at its boundaries and the semantics of the inner MoC internally.
Information hiding insulates the outer MoC from the inner one.” [6]. This
approached of worm-holes was a bit biased towards data-flow computational
models. In Ptolemy II it was replaced with opaque composite actors[11]. [Guus:
explain the difference between composite actors and worm-holes!]

There are other ways to mix models of computation too. Statemate uses
views. [Guus: are these views related to what Jantsch[15] calls analytical slicing
into domains?]

5.5 Continuity gap

[Guus: to be done. Explain that not all tools support all phases of (co-) design What phases of the
development process are
supported in the approach?

process. I.e. some simulation only; others formal verification only.]

5.5.1 Partitioning

[Guus: On manual and automatic partitioning. Use [43].] Is automatic partitioning
supported?

5.5.2 Implementation

A discrete-event model of computation is well suited for generating hardware.
It is not very suitable to generate (sequential) software[6] (p. 131). This is for
example why VHDL surprises the designer by taking so long. A model that

24 CHAPTER 5. REQUIREMENTS FOR CO-DESIGN METHODOLOGIES

heavily uses entities communicating through signals will burden the discrete-
event scheduler and bog down the simulation. Thus, a specification built on
discrete-event semantics is a poor match for implementation is software.

By contrast, VHDL that is written as sequential code runs relatively quickly
but may not translate well into hardware. The same goes for C: it runs very
quickly and is well suited for software, but not for specifying hardware.

Dataflow and finite-state models of computation have been shown to be
reasonably retargettable. Hierarchical FSMs such as Statecharts can be used
effectively to design hardware or software. It has also be shown that a single
dataflow specification can be partitioned for combined hardware and software
implementation.’[6]

5.6 Varea’s taxonomy

Many languages and tools that were developed based on a single model start to
embrace other models [13]. The downside of such large languages that compose
multiple MoC’s in an ad hoc fashion is that formal analysis may become very
difficult[6]. It compromises the ability to generate efficient implementations
or simulations and makes it more difficult to ensure that a design is correct.
It precludes such formal verification techniques as reachability analysis, safety
analysis and liveness analysis.

This is not to be said that compositional approach doesn’t work. It does
mean that a language should take the ability to integrate MoCs in it’s design
from the beginning. In this sense it’s important to realize that it’s not the
language itself, but the IDR that a language will be converted in is fundamental.
A lot of research goes into composite MoCs, suitable for both data- and control-
flow. We saw for example some extensions of the classic FSM in Chapter 4.3.4.
Varea[40] proposes a classification for internal design representations according
to the following taxonomy:

1. Models originally developed for control-dominated embedded systems and
later expanded to include data-flow (these models will be called MCD).

2. Models developed in a data-dominated basis extended to support also
control flow (referred to as MDC)

3. Unbiased model developed specifically to deal with combined control/data-
flow interactions (Mb)

As noticed in Chapter 2.3.4 the modelling of hybrid digital-analog systems
is a related field that is gaining more attention too. Also in this field there are
existing tools that are extended with functionality to deal with hybrid mod-
elling. An example of this is VHDL-AMS[7]. A good example is also SimuLink,
a framework that is commonly used [24]. It’s a modelling and simulation envi-
ronment for continuous-time dynamic systems with discrete events that recently
has been extended with statemachine modeling of discrete control[1].

5.7 Conclusion

In this chapter various requirements for modern system-level design tools have
been discussed. The following points should be investigated for Co-Design ap-

5.7. CONCLUSION 25

proaches:

1. Integration of various MoCs (this relates to the paradigm shift)

2. What is the type of application that the method supports

3. Is there a possibility of design-space exploration in the approach?

4. What type of target-architectures are supported

5. Does the approach allow IP re-use

6. The abstraction level of the approach

7. How complexity of design is dealt with (support for hierarchical modelling
of behavior)

8. Is there a ‘gap’ in the development process; what phases of the process
are supported

9. If is automatic partitioning supported (if the approach allows synthesis at
all)

Chapter 6

Co-Design methodologies

In this Chapter we’ll see a few of the most famous modelling methods and a
few that have been selecting because they are special. [Yes, this should be a
different sentence].

6.1 Ptolemy II

The Ptolemy project studies heterogeneous modelling, simulation and design of
concurrent systems, where the focus is on embedded systems.[11].

The primary investigator of the Ptolemy project is Edward A. Lee. In 1991
he presented a paper that described the Ptolemy system[3]. This system has
been in use for many years, and it’s now succeeded by a new version, Ptolemy
II.

The Ptolemy II software environment provides support for hierarchically
combining a large variety of models of computation and allows hierarchical nest-
ing of models[13]. It combines the wish for a homogeneous and thus predictable
model with the desire to mix partial models of different kinds in a common het-
erogeneous model by hierarchically nesting sub-models of potentially different
kinds.

A very good description of how this hierarchical mixed approach works in
practice can be found in [25].

Ptolemy II is a component-based design methodology. The components in
the model are called actors. A model is a hierarchial composition of actors. The
atomic actors, such as A1, only appear at eh bottom of the hierarchy. Actors
that contain other actors, such as A2, are composite. A composite actor can be
contained by another composite actor.

Atomic actors contain basic computation, from as simple as an AND gate to
more complex as an FFT. Through composition, actors that perform even more
complex functions can be built. Actors have ports, which are their communi-
cation interfaces. For example in Figure 6.1, A5 receives data from input ports
P3 and P4, performs its computation, and sends the result to output port P5.
A port can be both an input and an output. Communication channels among
actors are established by connecting ports.

The possibility to have various MoC’s can be found in the director. A direc-
tor controls the execution order of the actors in a composite, and mediates their

26

6.2. COSYMA 27

Figure 6.1: Example of a hierarchical specification of a systems using two (possi-
bly different) Models of Computation. The directors controls the flow of control
and data in such a MoC.

communication. In figure 1, D1 may choose to execute A1, A2 and A3 sequen-
tially. Whenever A2 is executed, D2 takes over and executes A4-A7 accordingly.
A director uses receivers to mediate actor communication. As shown in figure
2, one receiver is created for each communication channel; it is situated at the
input ports, although this makes little difference. When the produces actors
sends a piece of data (a token) to the output port, the receiver decides how
the transaction is completed. Within a composite actor, the actors under the
immediate control of a director interact homogeneously.

The focus in Ptolemy is on simulation.

6.2 COSYMA

An older design method is COSYMA, “CoSynthesis for Embedded Architec-
tures”. It was developed at the IDA, Germany. It covers the entire design flow
from specification to synthesis. The target architecture consists of a standard
RISC processor, a fast RAM for program and data with single clock cycle access
time and an automatically generated application specific co-processors. Com-
munication between processors and co-processor takes place through shared
memory. The goal of Cosyma is basically speeding up existing programs by
replacing parts in hardware[31][Guus: was this O’Nils?].

The system is designed in Cx. This is a C-extension with support for parallel
processes and timing constraints. The Cx specification is then converted into
an Extended Syntax Graph (ESG), the IDR. The ESG describes a sequence of
declarations, definitions and statements and is overlayed [Guus: how?] with
the Data Flow Graph (DFG) containing information about data dependencies.
This shows the software-background of the tool, it is something like an extended
compiler.

Research using COSYMA has been discontinued in 1999.

28 CHAPTER 6. CO-DESIGN METHODOLOGIES

6.3 ForSyDe

An interesting method has been development by Sander and Jantsch[32, 33]. In
their model events are totally-ordered by their tags. Every signal has the same
set of tags. Events with the same tag are processed synchronously. There is
a special value ⊥ (“bottom”) to indicate the absence of an event. These are
necessary to establish a total ordering among events. A system is modelled
by means of concurrent processes; it is a model based on the synchronous-
assumption (see Chapter 4.3.10).

Lu[26] shows how to transform a system specification described in ForSyDe
into its hardware and software counterparts. He does not provide a mixed
implementation of HW and SW. [Guus: why not per module possible to make
this decision?]

The hardware version of the Digital Equalizer that Lu makes is described
using behavioral VHDL. The process are described using skeletons and these
are then synthesized to VHDL code. The process described is manual. The
Haskell code turns into behavioral VHDL quite easily. To generate (naturally
sequential) C code an analysis phase is done to create a PASS.

6.4 Polis

The Polis research project started in 1988 by the UC Berkeley. It is a design
environment for control-dominated embedded systems. It supports designers
in the partitioning of a design and in the selection of a micro-controller and
peripherals.

The system specification language is Esterel, but a graphical specification
can also be given.

The generated software part consists of:

1. the application that has been modelled in CFSMs

2. a generated application-specific operating system for the selected processor

3. the I/O drivers

Hardware is synthesized as well. The Polis environment provides an interface
for verification and simulation tools as well as an simulator.

A fundamental limitation of the Polis system is the MoC used, the Codesign
Finite State Machine (CFSM). A CFSM is an extended finite state machine that
communicates with other CFSMs asynchronously with unbounded delay and by
means of events. The communication model between CFSMs is not efficient in
representing systems with intensive data processing, since CFSMs communicate
over channels with one-place buffers and have non-blocking write communica-
tion semantics. Therefore, a buffer is overwritten every time the sender emits
an event before the receiver has consumed the previous event. This can be
avoided either by means of scheduling constraints or with a blocking write pro-
tocol: however, both mechanisms often result in a loss of performance. This
means that POLIS is mainly useful for control-dominated embedded systems.
Although the POLIS method allows performance-estimation for the simple con-
troller that is generated, estimation techniques for more complex processor mod-
els are lacking[42].

6.5. VULCAN 29

The Polis project has led to a set of commercial tools called Felix in 1998. It
allows integration with Ptolemy, which makes it quite a powerful tool. [Guus:
expand relationship Felix, Polis, VCC and Metropolis].

6.5 VULCAN

HardwareC. No behavioral hierarchy possible. Rather lowlevel.

6.6 Solar/Music

[9] describes a multi-language approach at the system level providing both
system-level refinement and high-level interfaces synthesis.

6.7 SpecC

SpecC is a new language based on the C programming language.

6.8 SystemC

The SystemC language is a C++ language subset for specifying and simulating
synchronous digital hardware. It’s based on a class library of C++; it’s not a
new language by itself. It’s a initiative by a group of vendors and embedded
software companies to create a common (open source) standard.

In SystemC a complete system description consists of multiple concurrent
processes. The system can be specified at various levels of abstraction (behav-
ioral hierarchy).

6.8.1 SpecC vs. SystemC

SystemC and SpecC are two languages both coming from industry, only from
different providers. Another difference is that SpecC works on a little higher
abstraction level and it’s process is more structurized. SystemC on the other
hand is better suited towards RTL modelling of hardware design. It is possible
and fruitful to mix the two approaches as Cai et. al. illustrated[4].

6.9 FunState/SPI Workbench

FunState is an internal design model based on functions driven by state machines[38].
It is an enhancement of the older SPI Workbench[45].

The SPI Workbench [45] is based on intervals of system properties and is
specifically targeted to cosynthesis. Made for performance estimations. [Guus:
Funstate = new version of SPI workbench?]

30 CHAPTER 6. CO-DESIGN METHODOLOGIES

Table 6.1: The main characteristics of systems described in this Chapter.

Model MoC based on Main application Origin Target arch. Specification languages
COSYMA Cx

ForSyDe
FunState FSM with functions Mb

IRSYD Flow Charts
Polis CFSM Control-dominated MCD Esterel, graphical

Ptolemy II Multiple MoC’s
SpecC SpecC

SystemC SystemC†

Vulcan Flow... MDC HardwareC

†kVAd means distortion power.

6.10 Comparison

Some approaches don’t try to incorporate many different models of computa-
tions. Polis for example is targetted towards control-oriented systems. It allows
for a complete design process from high-level model to implementation. Because
the computational model used in Polis is partly based on FSMs, the according
state-space explosion causes the Polis approach to be only suitable for smaller
systems.

Not all approaches described here are ‘industry-ready’. There is a lot of re-
search going on into new internal representation languages (FunState, ForSyDe).
This shows that many researchers believe the current IDRs are not rich enough.
A rough classification can be made of the direction research into IDRs is going:

• FSM based approaches (such as Polis)

• Petri-net based approaches

Not every approach that has been described support all the phases of Co-
Design described in Chapter 3. In Table 6.10 the supported steps are indicated.
Ptolemy II is a bit of an outsider here. The main focus of Ptolemy II is (co-
)simulation and the other phases get less attention.

Two older approaches that do have a complete design process are Vulcan and
Cosyma. They have a lower ambition though: the level of abstraction is rather
low: they are both extensions of existing processes. Vulcan from a hardware
side, Cosyma from a software side.

SystemC and Specc also have a lower level of abstraction than for example
Polis offers. An important difference is that they do take IP integration into
account.

[+automatic partioning? + IP reuse]

6.10. COMPARISON 31

Table 6.2: The supported phases of the Co-Design development process.

Model Simulation Formal analysis and verification Synthesis Maturity License
COSYMA
ForSyDe
FunState FSM with functions

Polis
Ptolemy II Yes No[1] Good PD

SpecC
SystemC
Vulcan

Chapter 7

Conclusions

A synergistic approach of hardware and software design and taking design to
higher level are nowadays recognized as mandatory to keep up with the increas-
ing complexity of embedded systems design. This observation made by Chess
is shared by the whole industry. Academic work is done on this field too.

7.1 Internal design representation

Most Co-Design methodologies make use of an internal representation for the
refinement of the input specification and architectures. Many such internal
representations exist. They are all based on one or more Computational Models,
and for separate parts of the system different MoC’s are useful as we saw in
Chapter 4.4. There is a ‘natural mapping’ between a MoC and certain system
parts.

Experiments with system specification languages have shown that there is
not a single universal specification language to support the whole design process
for all kinds of applications. [16]. Some tools use 1, others use more than
1 internal design representation. There is a lot of research going into new
(potential) IDRs.

7.2 Co-Design approaches

Ptolemy II seems to be a very mature tool, specifically the theoretical foundation
of mixing various computational models is well thought-out. However, it is
mainly focussed towards simulation.

[Guus: Which?!] The two issues found in this paper are closely related. If you
want a single specification language you’ll loose in the paradigm-shift. It is hard
to imagine an (efficient) language that allows both control- and dataflow types
to be presented and generate efficient code for it for all types of applications. On
the other hand, if you don’t mind taking the HW/SW decision earlier there are
very good integrated tools and frameworks that allow working with both parts
of your system in a systematic way. Code generation (or hardware generation)
is easier in this style.

[19] also realizes this. He says: “the refinement approach has proven to be
very effective for implementing a single algorithm into hardware. The approach

32

7.3. ROADMAP 33

is, however, less effective for a set of applications. In general, the refinement
approach lacks the ability to deal effectively with making trade-offs in favor of
the set of applications.”

There is also a mixed form possible. This mixed form would not be applicable
for every type of system, but only for a subset. An example of such an approach
is ForSyDe. They allow the specification of both control- and dataflow parts in
a single language. They have shown to be able to generate (reasonably) efficient
code.

7.3 Roadmap

Research in high-level system design will be concentrated in 4 directions:

• Special complete design flows for specific types of system (small control
dominated: Polis, creation of DSPs ...)

• Research into internal design representations that allow a wider range of
applications to be modelled later like above.

• Cosimulation based: allows for a wide range of applications, high level
representation but does not offer code-generation.

• Platform based design, lower level representation, C-like languages. Al-
lows code generation, integration of IP blocks.

Bibliography

[1] R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivančić, V. Kumar, I. Lee,
P. Mishra, G. Pappas, and O. Sokolsky. Hierarchical modeling and analysis
of embedded systems. Proceedings of the IEEE, 91(1), January 2003.

[2] J. Backus. Can programming be liberated from the Von Neumann style?: a
functional style and its algebra of programs. Communications of the ACM,
21(8):613–641, 1978.

[3] J. Buck, S. Ha, E. Lee, and D. Messerschmitt. Ptolemy: a mixed paradigm
simulation/prototyping platform in C++. In Conference Proceedings C++
At 163 Work, 1991.

[4] L. Cai, D. D. Gajski, M. Olivarez, and P. Kritzingers. C/C++ based system
design flow using specc, vcc and systemc. Technical report, University of
California, Irvine, June 2002.

[5] A. Cassidy. High-level performance modelling and design exploration, –.

[6] W.-T. Chang, S. Ha, and E. A. Lee. Heterogeneous simulation – mixing
discrete-event models with dataflow. Journal of VLSI Signal Processing,
15:127–144, 1997.

[7] E. Christen and K. Bakalar. VHDL 1076.1 - analog and mixed signal ex-
tensions to VHDL. In Proceedings of the conference with EURO-VHDL’96
and exhibition on European Design Automation, pages 556–561. IEEE Com-
puter Society Press, 1996.

[8] L. A. Cortés, P. Eles, and Z. Peng. A survey on hardware/software codesign
representation models. Technical report, Linköping University, June 1999.

[9] P. Coste, F. Hessel, and A. Jerraya. Multilanguage codesign using SDL
and Matlab, 2000.

[10] S. Cotofana, S. Wong, and S. Vassiliadis. Embedded processors: Char-
acteristics and trends. Technical report, Delft University of Technology,
2001.

[11] J. Davis II, C. Hylands, J. Janneck, E. A. Lee, J. Liu, X. Liu, S. Neuendorf-
fer, S. Sachs, M. Stewart, K. Vissers, P. Whitaker, and Y. Xiong. Overview
of the Ptolemy project. Technical report, University of California at Berke-
ley, Mar. 2001.

34

BIBLIOGRAPHY 35

[12] M. Eisenring, J. Teich, and L. Thiele. Rapid prototyping of dataflow pro-
grams on hardware/software architectures. In Proc. of HICSS-31, Proc. of
the Hawai’i Int. Conf. on Syst. Sci., pages 187–196, Kona, Hawaii, January
1998.

[13] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Y. Xiong. Taming heterogeneity - the Ptolemy approach. In
Proceedings of the IEEE, 2002.

[14] D. Gajski, J. Zhu, and R. Dömer. Essential issues in codesign. Technical
report, University of California, Irvine, 1997.

[15] A. Jantsch, S. Kumar, and A. Hemani. The Rugby meta-model. Technical
report, Royal Institute of Technology, Mar. 2000.

[16] A. A. Jerraya, M. Romdhani, P. L. Marrec, F. Hessel, P. Coste, C. Valder-
rama, G. F. Marchioro, J. M. Daveau, and N.-E. Zergainoh. Multilanguage
Specification for System Design and Codesign, chapter 5. Kluwer academic
Publishers, 1999.

[17] Y. Jiang and R. K. Brayton. Software synthesis from synchronous specifi-
cations using logic simulation techniques. In Proceedings of the 39th con-
ference on Design automation, pages 319–324. ACM Press, 2002.

[18] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and A. L. Sangiovanni-
Vincentelli. System level design: Orthogonalization of concerns and
platform–based design. IEEE Trans. on CAD, 2000.

[19] B. Kienhuis, E. F. Deprettere, P. van der Wolf, and K. Vissers. A method-
ology to design programmable embedded systems — the Y-chart approach.
Lecture Notes in Computer Science, 2268:18–??, 2002.

[20] Y. Kim, K. Kim, Y. Shin, T. Ahn, and K. Choi. An integrated cosimulation
environment for heterogeneous systems prototyping. Design Automation
for Embedded Systems, 3(2/3):163–186, Mar. 1998.

[21] E. A. Lee. System-level design methodology for embedded signal processors.
Technical Report F33615-93-C-1317, University of California at Berkeley,
1997.

[22] E. A. Lee. Embedded software. Technical report, University of California
at Berkeley, July 2001.

[23] E. A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing
models of computation. IEEE Transactions on Computer Aided Design,
17(12):1217–1229, Dec. 1998.

[24] J. Liu. Responsible Frameworks for Heterogenous Modeling and Design of
Embedded Systems. PhD thesis, University of California at Berkeley, 2001.

[25] X. Liu, J. Liu, J. Eker, and E. A. Lee. Heterogeneous modeling and design
of control systems. Software-Enabled Control: Information Technology for
Dynamical Systems, 2002. To appear.

36 BIBLIOGRAPHY

[26] Z. Lu. Refinement of a system specification for a digital equalizer into HW
and SW implementations. January, Royal Institute of Technology, 2002.

[27] G. D. Micheli and R. K. Guipta. Hardware/software co-design. In Proceed-
ings of the IEEE, volume 85, pages 349–365, Mar. 1997.

[28] V. J. Mooney III and G. De Micheli. Real time analysis and priority sched-
uler generation for hardware-software systems with a synthesized run-time
system. In Proceedings of the 1997 IEEE/ACM international conference
on Computer-aided design, pages 605–612. IEEE Computer Society, 1997.

[29] S. Neema. System-level synthesis of adaptive computing systems, Mar.
2000.

[30] B. Ninness. Fundamentals of Signals, Systems and Filtering. –, 2002. To
appear.

[31] M. O’Nils. Specification, Synthesis and Validation of Hardware/Software
Interfaces. PhD thesis, Royal Institute of Technology, Sweden, 1999.

[32] I. Sander and A. Jantsch. System synthesis based on a formal computa-
tional model and skeletons. In Proceedings of the IEEE Computer Society
Annual Workshop on VLSI, 1999.

[33] I. Sander and A. Jantsch. System synthesis utilizing a layered functional
model. In Proceedings of the Seventh International Workshop on Hard-
ware/Software Codesign (CODES-99), pages 136–140. ACMPress, May
1999.

[34] S. Schulz and J. Rozenblit. Concepts for model compilation. Proceedings
of ICDA Conference, 2000.

[35] T. M. Stauner. Systematic Development of Hybrid Systems. PhD thesis,
Institut für Informatik der Technischen Universität München, 2001.

[36] R. Tessier and W. Burleson. Reconfigurable computing for digital signal
processing: A survey. Journal of VLSI Signal Processing, 28(1):7–27, June
2001.

[37] The Economist. Bespoke chips for the common man. The Economist, Dec.
2002. 12th.

[38] L. Thiele, K. Strehl, D. Ziegenbein, R. Ernst, and J. Teich. FunState - an
internal design representation for codesign. In ICCAD’99, the IEEE/ACM
Int. Conf. on Computer-Aided Design, pages 558–565, San Jose, U.S.A.,
Nov. 1999.

[39] J. van der Wateren and A. M. Bos. Real-time software testing throughout
a projects life cycle using simulated hardware. In Proceedings of the 5th
International Workshop on Simulation for European Space Programmes,
Nov. 1998.

[40] M. Varea. Mixed control/data-flow representation for modelling and verifi-
cation of embedded systems. Technical report, University of Southampton,
Mar. 2002.

BIBLIOGRAPHY 37

[41] Various. VSI alliance deliverables document. Technical report, VSI Al-
liance, 1999.

[42] V. D. Živković and P. Lieverse. An overview of methodologies and tools
in the field of system-level design. Lecture Notes in Computer Science,
2268:74–??, 2002.

[43] W. Wolf. Computers as components: principles of embedded computing
system design. Academic Press, 2001.

[44] T.-Y. Yen and W. Wolf. Hardware-Software Co-Synthesis of Distributed
Embedded Systems. Kluwer Academic Publishers, 1996.

[45] D. Ziegenbein, K. Richter, R. Ernst, L. Thiele, and J. Teich. SPI – a system
model for heterogeneously specified embedded systems. IEEE Trans. on
VLSI Systems, 2002.

Appendix A

Vocabulary

ASIC Application specific Integrated Circuit
FPGA Field-Programmable Gate Array (a specific type of PLD)
FSM Finite State Machine (see Chapter 4.3.4)
IDR Internal Design Representation
IP Intellectual Property. Used in the field of embedded sys-

tems to refer to existing modules (from other vendors)
that can be used to build a system

MoC Model of Computation, or computational model
PLD Programmable Logic Device

VHDL A language to describe layout and or behaviour of hard-
ware. Comparable to a program-language for software

38

