
February 10, 2003

A Survey of Co-Design Ideas and Technology

(draft)

by

G. Bosman

Supervisors:

Dr. Ir. A. M. Bos (Chess-iT)

Ing. P. G. C. Eussen (Chess-iT)

Dr. R. Lämmel (Vrije Universiteit)

ii

Contents

Chapter

1 Introduction 1

1.1 Traditional design . 2

1.2 Programmable logic . 3

1.3 Outline of this thesis . 4

2 Assignment 5

3 Background 6

3.1 History of Co-Design research . 6

3.2 Related work . 6

3.3 Related approaches . 6

3.3.1 Software in the loop . 7

3.3.2 Reconfigurable hardware . 7

3.3.3 Adaptive computing . 7

3.3.4 Hybrid systems . 8

4 Co-Design 9

4.1 Abstraction . 9

4.2 Specification and modelling . 10

4.3 Modelling approaches . 11

4.3.1 Homogenous modelling . 11

iii

4.3.2 Heterogeneous modelling . 11

4.4 Validation . 12

4.5 Implementation . 13

4.5.1 Hardware/software partitioning . 13

5 Computational Models 15

5.1 Dataflow vs. Control flow oriented . 15

5.2 Common computational models . 16

5.2.1 Finite-state machines . 16

5.2.2 Imperative models . 17

5.2.3 Differential Equations . 17

5.2.4 Difference Equations . 17

5.2.5 Process networks and dataflow . 17

5.2.6 Discrete-event models . 18

5.2.7 Petri Nets . 18

5.2.8 Synchronous models . 19

5.2.9 Rendezvous models . 19

5.3 Comparison . 19

6 Heterogeneous systems 21

6.1 Example: internal combustion engine . 21

6.2 Old tools revived . 23

6.3 New heterogeneous tools . 23

6.4 Ptolemy II . 24

6.5 COSYMA . 25

6.6 Simulink . 26

6.7 *charts . 26

6.8 ForSyDe . 26

iv

6.9 Moses framework . 27

6.10 Polis . 27

6.11 Metropolis . 28

6.12 Solar/Music . 28

6.13 FunState/SPI Workbench . 28

6.14 IRSYD . 29

6.15 Comparison . 29

7 Discussion of hybrid models 31

7.1 Design-space exploration . 31

7.2 Target architecture . 32

7.3 Hierarchy/emergent behavior . 33

7.4 Synthesizing code . 34

7.5 Paradigm shift . 35

8 Conclusions 37

Bibliography 39

Appendix

A Vocabulary 43

1

Chapter 1

Introduction

Designing embedded systems is becoming more and more complex due to the increas-

ing size of integrated circuits and time-to-market requirements. This increasing complexity of

embedded systems is the driving motivation for a high-level system design approach. A high-

level system design notation could also offer substantial performance benefits as there can be a

smarter partitioning of the system’s parts onto hardware and software. High-level system design

is currently a major research area by academics world-wide and it is strongly rooted in tradi-

tional areas such as control theory and digital design theory. For Chess such a design approach

could mean a faster and better design process. This paper investigates a number of aspects

of high-level system design and the current state of the art in existing tools and methods that

allow high-level system design.

A system design notation should be at an abstract level that allows reasoning at a high

level of abstraction. However, to be useful it must also be possible to synthesis code from this

high-level language for hardware and software. How to divide the functionality of the system

in hardware and software parts is a very important aspect of this synthesis. Traditionally the

choice what to implement in hardware and what to implement in software is made early in the

design process. Both parts are then made in separate tracks by separate design teams.

When the emphasis lies on the hardware-software partitioning problem, system-level de-

sign methods are also called ”Co-Design” methods. These terms are often used mixed; in this

paper Co-Design will be mainly used.

2

The goal of Co-Design is to explore the whole design-space to be able to make well-

informed decisions and to be able to make this decision in a later phase in the design process.

This would lead to a more optimal partitioning and more flexibility in the process from design

to implementation. To really understand the improvement a high-level system design paradigm

would make, it is important to see how traditional system design works and what the problems

are with such an approach.

1.1 Traditional design

Traditionally complex embedded systems are designed around a microprocessor in a Von

Neumann architecture. A Von Neumann system is fundamentally a sequential system. There

is heavy optimalisation inside the CPU itself (for instance using pipelining) but ultimately the

commands are executed one at a time. Systems based on microprocessors have several benefits.

Microprocessors are very well optimized and they allow design of families of products that can

be built. Such a family of products can provide various feature sets at a different price point

and can be extended to keep up with rapidly changing markets[49].

However, the fact that each command is executed sequentially leads to a fundamental

limitation. Backus [1978] calls this the ”von Neumann bottleneck”. He points out that this

bottleneck is not only a physical limitation, but has also been an ”intellectual bottleneck” in

limiting the way we think about computation and how to program.

[Guus: explain difference between hardware and software as related to concurrency.]

This same aspect is a major motivation for Chess to do this investigation: how to prevent the

’paradigm-shift’ that often occurs in designing systems. [Guus: this paragraph should be better.

Explain more what the paradigm shift is.]

Not all embedded systems are designed around microprocessors. It is possible to design

embedded chips that compute in a parallel way. Application Specific Integrated Circuits (ASICs)

are specialized chips that are used for example to implement encryption algorithms. They are

similar to processors in the sense that they are also ’hardwired’ solutions. It is very expensive to

3

design an ASIC, and a very slow process. Therefore, customizing an ASIC for a single application

is only feasible when the project is reasonably big. In any case an ASIC can only be produced

when the layout is final: it is not possible to experiment with the layout and try several versions.

Although you’ll loose the optimalizations found in microprocessors there is a huge poten-

tial gain when designing hardware that is parallel in nature because the layout of the hardware

can then be tailored exactly to the functional requirements. This can be extremely profitable,

especially when the problem to be solved is mainly parallel in character. ASICs are therefore

often used in areas such as compression or encryption which are parallel ’in nature’.

An important motivation for the rising interest in Co-Design is the introduction of another

type of chip that is much more flexible than ASICs: Programmable logic devices.

1.2 Programmable logic

Programmable Logic Devices (PLDs) are computer chips that can be programmed to im-

plement circuits requiring both combinational and sequential logic. Reconfigurable logic devices

are a class of programmable logic devices that may be reprogrammed as often as desired. FPGA’s

are reconfigurable logic devices that are becoming very popular[9]. Three direct benefits of the

reconfigurable approach can be recognized: specialization, reconfigurability and parallelism[41]

[Guus: use more of Tessier on future developments [41]]. FPGA’s shorten the development cycle

dramatically and are much cheaper to use than ASICs. This allowed research in Co-Design to

increase a lot. It also made researchers consider more fine-grained approaches.

Early approaches in Co-Design started with components of high granularity, such as

ASICs and microprocessors. In Co-Design methods a mixture is often used. Parts of the

hardware are designed from scratch, but a microprocessor is also used. This allows the system

to benefit from both the microprocessor’s specialization, and for the parts of the system that

benefit most of this a parallel implementations. This difference in level of granularity is an

important feature to discriminate on various Co-Design approaches.

Obviously designing hardware and software for a system in an integral manner is an

4

extremely complex task with many aspects. There is a wide range of architectures and design

methods, so the hardware/software Co-Design problem is treated in many different ways.

In this thesis it is investigated what methods exists that comply with the Chess business.

I’ll compare them with each other. I’ll also investigate the problem of the paradigm shift (or

the prevention of this) when designing parallelism in a high-level language. Ideally the resulting

hard- and software description should be parallel in nature where possible.

In this paper I’ll give an overview of the field and indicate the open issues. I’ll try to

answer to question which type of language is suitable for which problem.

1.3 Outline of this thesis

First we’ll look at what Co-Design is and the problems it tries to solve. In Chapter

4.3 different types of Co-Design approaches are described, and the classifications that can be

made. It turns out that the paradigms, the computational models, are very important. They

are directly related to the paradigm shift. Chapter 5 describes computational models that are

commonly used to model (parts of) systems.

A single paradigm approach has serious disadvantages so various hybrid models have

been proposed in literature. In Chapter 6 existing projects and models will be described and

analyzed using the classifications and ideas found in the first part. Per method we’ll look at

some case studies to get a better view of how the multi-paradigm modelling works and how

well it can be applied. In Chapter 7 the pro’s and contra’s of the investigated heterogeneous

methods will be discussed.

5

Chapter 2

Assignment

”To investigate various development methods and to investigate how an integrated ap-

proach of hardware-software design can improve system development at Chess.”

I’ll give a introduction to the field of Co-Design. I will investigate the relevance and

relationships between these specification and design languages in the track from specification to

implementation. I’ll research to which degree existing development and implementation methods

support compatible paradigms.

The focus in this paper will be on the shift of paradigms when traversing through the

various levels of detail.

6

Chapter 3

Background

3.1 History of Co-Design research

The field of Co-Design is about 10 years old now. [Guus: about Gupta paper etc]

In 1998 a paper was published that described a method to synthesize code for both

hardware and software, for a specific type of data-flow programs[14].

Research in Co-Design is a big field. Three institutes worth mentioning are the Royal

Institute of Technology (Stockholm, Sweden), the Indian Institute of Technology (Delhi, India),

University of California (Berkeley, USA).

3.2 Related work

The SAVE project of the Linköping University in Sweden did a survey on Co-Design

representation models in 1999[7]. At the Leiden University in the Netherlands a survey was

done comparing 8 tools and their underlying methodologies[48]. O’Nils presented ComSys, an

approach to the generation of interfaces between application software and hardware IP compo-

nents. In his PhD thesis from 1999 he reviewed several Co-Design methods[35]. [Guus: about

other comparative papers; the one comparing 6 systems for example.]

3.3 Related approaches

A number of areas that are related to Co-Design have been researched.

7

3.3.1 Software in the loop

Some of the issues Co-Design tries to solve are also handled by ’Software-In-The-Loop’.

This is developing software in a virtual hardware environment. Although this easies the design

of software for hardware it does not allow the full improvements made possible by Co-Design

because the partitioning between hardware and software is not flexible. Within Chess a chip

has been developed (the SHAM) that allows software testing for onboard software[45].

3.3.2 Reconfigurable hardware

Reconfigurable systems exploit FPGA technology, so that they can be personalized after

manufacturing to fit a specific application.

”A promise of reconfigurable hardware is that it should allow the logic and memory

resources in a chip to be used more efficiently, especially in applications that need massive

computing power. But there is a further commercial advantage. It could turn finished products

into a source of service revenue. Imagine a music player that includes programmable logic. When

a new music-compression format emerges to replace MP3, owners of the player could download,

for a fee, a new decompression algorithm for their player from the maker’s website”[42].

[Guus: Add reference to Viales or ITA project here (reconfigurable parts)]

The operation of reconfigurable systems can either involve a configuration phase followed

by an execution phase or have concurrent (partial) configuration and execution.[32]. The major

problem in this type of systems consists of identifying the critical segments of the software

programs and compiling them efficiently to run on the programmable hardware. This is a

different field and will not be treated in this thesis.

3.3.3 Adaptive computing

The field of adaptive computation is closely related to reconfigurable hardware. According

to Neema the primary challenge of the Adaptive Computing approach is in system design[34].

8

3.3.4 Hybrid systems

Most traditional Co-Design methods explore ways of modelling digital systems. Em-

bedded systems however, often interact with an analog environment. Traditionally, this is the

domain of control theory and related engineering principles. Because of the way models are often

treated (digital) the analog environment is often abstracted to a digital translation by computer

scientists. This way traditional Co-Design is unable to guarantee safety and/or performance of

the embedded device as a whole.

To address this issue hybrid embedded system models have been designed[1, 40]. The

issues that Co-Design faces, such as combining various models of computations and making sure

properties are valid throughout the whole design phase, can of course also be found in this hybrid

system modelling. In fact, the difference between the two is not always very sharp. [TBD: on

differential equations].

9

Chapter 4

Co-Design

Co- Design is ”A design methodology supporting the concurrent development of hardware

and software in order to achieve system functionality and performance goals. In particular, Co-

Design often refers to design activities prior to the partitioning into Hardware and Software and

the activity of design partitioning itself.”[47].

4.1 Abstraction

A goal of all design methods is to allow systems to be designed on a higher level than

the implementation level. The ultimate goal is to allow a very high-level design, that then

automatically can be converted into the implementation level. This is a fundamental notion in

computer science. Examples are programming languages, that allow humans to reason about

variables or flow-of-control on an much higher level than machine code allows. There has also

been a lot of research into finding languages to design hardware from a higher level. Nowadays

it is very common to use a language as VHDL to define hardware. There are compilers available

to generate netlists (hardware descriptions) from languages like VHDL. Although VHDL is

probably considered by software engineers to be low-level, it is a major step forward compared

to the arcane art of programming cells and gates directly.

This looking for a higher level of abstraction is an ongoing quest, and as so it can also be

found in Co-Design methods. Ultimately the goal is to be able to design a system in a textual

or graphical way, in such a manner that there will be an automatic compiler from this high-level

10

representation into the implementation level: hardware, software or (often) a combination of

both. Sometimes such an approach is called model compilation[38].

A higher level of abstraction in modelling decreases the gap between functional require-

ments of a system and the modelling process, leading to a better fit between these.

The Co-Design system design process for embedded systems includes modelling, valida-

tion, and implementation[32].

4.2 Specification and modelling

Modelling is the process of conceptualizing and refining the specification. The result of

the modelling phase is a model, which is specified in a internal design representation. There are

several tasks that must be performed to create a system-level design model. To comprehend the

benefits of various Co-Design technologies it is important to understand how the design process

works.

’There is a subtle relationship between the specification of a system and the modelling of

a system. An executable specification, for example, is also a model of an implementation. The

difference is in emphasis. A specification describes the functionality of a system, and may also

describe one or more implementations. A model of a system describes the functionality. In a

specification it is important to avoid over-specifying the design, to leave implementation options

open. In a model, often the key criteria are precision, simplicity and efficient simulation. A

model should be the most abstract model that represents the details being tested.’[6]. [Guus:

what to do with the paragraph?]

Specification is closer to the problem level, at a higher level of abstraction, and uses one

or more models of computation. A specification undergoes a synthesis process (which may be

partly manual) that generates a model of an implementation. That model itself may contain

multiple models of computation. The outcome of the modelling process is the Internal Design

Representation (IDR). There is a trade-off between scalability and expressiveness in this IDR[46].

11

4.3 Modelling approaches

Approaches to hardware/software Co-Design of embedded systems can be differentiated

in several ways. One way is to consider the system-level specification, which is either homo-

geneous (in a single specification language) or heterogeneous (involving multiple specification

languages)[33]. Another way is to distinguish how the design methods deal with the SW/HW

partitioning: fine-grained or coarse-grained. Modelling in the context of Co-Design is sometimes

called cospecification.

4.3.1 Homogenous modelling

Homogeneous modelling implies the use of single specification language for the modelling

of the overall system. Lee[25] calls this the ’grand unified method’. Co-design starts with a global

specification given in a single language. This specification may be independent of the future

implementation and the partitioning of the system into hardware and software parts. In this

case Co-Design includes a partitioning step aimed to split this initial model into hardware and

software. The outcome is an architecture made of hardware processors and software processors.

The is generally called a virtual prototype and may be given in a single language or different

languages[20]. Lee sees as a big problem that a homogenous approach imposes a model of

computation which might be good for a subset of systems but bad for others[25].

This approaches is called compositional by Coste[8]. It aims at integrating the partial

specification of sub-systems into a unified representation which is used for the verification and

design of the global behavior. Examples are Polis, COSYMA and SpecC.

4.3.2 Heterogeneous modelling

Heterogeneous modelling allows the use of separate languages for the hardware and soft-

ware parts. The Co-Design starts with a virtual prototype where the hardware/software par-

titioning is already made. Here the emphasis is on the integral designing of the parts to make

sure the overall system has the required properties. The key issues are validation and interfacing

12

[20]. A lot of research is done on the integration of different system parts tat enables system

optimization across language boundaries. [this sentence from the SPI Workbench].

The cosimulation-based approach consists in interconnecting the design environments

associated to each of the partial specifications. Like its names suggests, with co-simulation the

software parts and the hardware components of an system and their interactions are simulated

in one simulation. It does not provide such a deep integration as compositioning does however

it does allow for modular design. Communication is often done using a cosimulation bus, that

is in charge of transferring data between the different simulators.

The Cosimulation-field is reasonably well established. Sometimes cosimulation is used to

simulate the behavior of a system consisting of 2 models: the hardware and the software, and

sometime it is used to model on a more abstract level where the hardware vs software decision

has not been made yet. [Guus: really? This is interesting. Expand on this.] A typical example

of a Co-Design approach is Ptolemy II.

4.4 Validation

Through the validation process, the designer achieves a reasonable level of confidence

about how much of the original embedded system design will be in fact be reflected in the final

implementation[46]. There are 3 three methods for validation:

(1) Simulation

(2) Prototyping

(3) Formal Verification

There has been a lot of research in the simulation of heterogeneous hardware/software

systems [46, 24, 6]. Formal verification allows for a more thorough test of the embedded system

behavior (maximum behavioral coverage) by means of logics.

It is good to note that in simulation the hardware is often simulated (although often

not real-time, as it’s just a simulation). However there has also been some research in replac-

13

ing the hardware simulator with an FPGA (or multiple FPGAs) that simulate the real target

hardware[24].

4.5 Implementation

The model found throughout the modelling phase has to be implemented into hardware

and software. It is an important notion in a Co-Design approach that there is no continuity

problem. That is: the steps from model to the synthesis should be all in the design process[38].

In the phase architectural information is taken into account. Varea[46] calls this a merger

between the IDR and the technology library. It is important that the intermediate IDR or

specification is not too operational (influenced by the current technology) or it will bias the

design towards a specific architecture. Steps in the implementation phase include:

(1) Hardware/Software partitioning

(2) Synthesis of the code for software and hardware

4.5.1 Hardware/software partitioning

’The partition of a system into hardware and software is of critical importance because it

has a huge impact on the cost/performance characteristics of the final design. In the case

of embedded systems, a hardware/software partition represents a physical partition of sys-

tem functionality into application-specific hardware and software executing on one (or more)

processor(s).’[32]. When considering general purpose computing systems, a partition represents

a logical division of system functionality, where the underlying hardware is designed to support

the software implementation of the complete system functionality. This division is elegantly

captured by the instruction set. Thus instruction selection strongly affects the system hard-

ware/software organization.

Obviously is important to look at the architectural organization of the system. Although

it is possible to generate a complete system using only FPGA’s, it is very common to use a

14

combination of 1 (or more) processors with dedicated hardware. This is called coprocessing[32]

On the lowest level, FPGA’s can be used to implement SM’s, datapaths and nearly any

digital circuit. The outcome of the synthesis process is a final implementation of the embedded

system.

It is clear that the choice of an IDR is a very important aspect of a Co-Design method,

therefore in the next chapter we’ll go into the various types of IDR’s there are.

15

Chapter 5

Computational Models

Modelling is a the heart of development methods. The computational models can be found

in the Immediate Representation Language. All Co-Design systems are based on a computational

model, or combine a few of them.

A computational model is a formal, abstract definition of a computer. It describes the

components in a system and how they communicate and execute. Several models exists. There

are a number of authors who made an overview of various development methods, i.e. [50], [20].

[Guus: here explain what I want to find about of the models]. Ie, timing, hierarchy.]

An essential difference between concurrent models of computation is their modelling of time.

[25] (page 11). Lui[27] states that the different notions of time make programming of embedded

systems significantly different from programming in desktop, enterprize or Internet applications.

Lee[26] proposed a mathematical framework to compare certain properties of models of compu-

tation. This allows for a precise definition of the various computational models.

In the Chapter a few ’basic’ Models of Computations are described.

5.1 Dataflow vs. Control flow oriented

[Guus: insert examples here]. Fundamental to embedded software is the notion of con-

currency. There is a lot of research done on compiling concurrent languages into sequential code

that can be run on a microprocessor, see for example [21]. For this thesis however it is more

interesting to see what happens when this paradigm-shift does not have to be made.

16

Figure 5.1: A state transition graph.

There are models that are designed to describe dataflow oriented systems (ie DSPs) and

there are models more suitable for control-flow systems.However this approach lacks generality

as most systems are not easily put in either one category. It should be noted that the difference

between a control-flow or data-flow oriented computational model is important for both control

and data-oriented systems. Many control-systems use complex sensors or subsystems such as

image processing algorithms that are best specified using a type of data-oriented computational

model[28].

5.2 Common computational models

5.2.1 Finite-state machines

The finite-state machine model has been widely used in control theory and is the foun-

dation for the development of several models for control-dominated embedded systems. The

classical FSM consists of a set of states, a set of inputs, a set of outputs, a function which

defines the outputs in terms of input and states and a next-state function.[7].

FSMs model systems where the system at any given point in time can exist in one of

finitely many unique states. This makes them excellent for control logic in embedded systems.

They can very well be formally analyzed and it is relatively straightforward to synthesis code

from this model[25].

FSM can be visualized very well using a state transition graph (see Figure 5.2.1). FSM

have a number of weaknesses. They are not very expressive, and the number of states can

get very large even in the face of only modest complexity. Is intended for control-oriented

17

systems with relatively low algorithmic complexity. A number of variations has been proposed

to overcome to weaknesses of the classical FSM model. Using FSMs in a hierarchical model was

first made popular by Harel[28]. He proposed StateCharts, which combine hierarchical FSMs

and concurrency. In Chapter 6.7 we’ll see some examples of heterogenous models based -partly-

on FSMs.

5.2.2 Imperative models

In an imperative model of computation, modules are executed sequentially to accomplish

a task. This is the most trivial computational model there is and most authors don’t even

mention it. However in Chang’s paper[6] it is mentioned because it can be used in combination

with other models in a hierarchical system. See also Chapter 7.3.

5.2.3 Differential Equations

These are often used to model mechanical dynamics, analog circuits, chemical pro-

cesses and many other physical systems. [15].TBD. When using real numbers as time model,

continuous-time systems are active over the entire time axis processing their input and producing

output.[40].

5.2.4 Difference Equations

Like differential equations, but discrete. TBD. These two are very important as they deal

with a very common type of signal from the outside world. Discrete-time systems can only react

to their input and produce new output at distinct, equidistant time instances. [40]

5.2.5 Process networks and dataflow

In a process network model of computation the arcs represent sequences of data values

(token) and the bubbles represent functions that map input sequences into output sequences.

Certain technical restriction are necessary to ensure determinacy.[25]. It is a common represen-

18

Figure 5.2: A dataflow graph for (a ∗ b) + (c/d)−
√

(e mod f).

tation formalism for modeling algorithms. The graph representation can be interpreted asyn-

chronous (ADF) or synchronous (SDF). [Guus: uitwerken wat voor soort data-flow modellen er

allemaal bestaan; split it into two?]

5.2.6 Discrete-event models

In a discrete-event system, modules react to event that occurs at a given time instant and

produce other events either at the same time instant or at some future time instant. Execution is

chronological[6]; time is an integral part of the model. Events will typically carry a time stamp,

which is an indicator of the time at which the event occurs within the model. A simulator for

Discrete-Event models will typically maintain a global event queue that sorts events by time

stamp. This sorting can be computationally costly. [Guus: hard to simulate, nice in hardware].

5.2.7 Petri Nets

In the classical approach a Petri net is composed of 4 basic elements: a set of places,

a set of transition, an input function that maps transitions to places, and an output function

which is also a mapping from transition to places. This is an well-understood modelling tool.

Two important features of Petri nets are its concurrency and asynchronous nature.[7]. [Guus:

expand a little bit: where are petri nets good for?]

19

5.2.8 Synchronous models

In synchronous languages, modules simultaneously react to a set of input events and in-

stantaneously produce output events. If cyclic dependencies are allowed, then execution involves

finding a fixed point, or a consistent value for all events at a given time instant.[6]

Very often real-time systems are specified by means of concurrent processes, which com-

municate asynchronously [37].

The synchrony hypothesis forms the base for the family of synchronous languages. It

assumes, that the outputs of a systems are synchronized with the system inputs, while the

reaction of the system takes no observable time. So time is abstracted away. The synchrony

hypothesis abstracts from physical time and serves as a base of a mathematical formalism. All

synchronous languages are defined formally and system models are deterministic.

’In synchronous languages, every signal is conceptually (or explicitly) accompanied by

a clock signal. The clock signal has meaning relative to other clock signals. It defines the

global ordering or events. Thus, when compariung two signals, the associated clock signals

indicate which events are simultaneous and which precede or follow others. A clock calculus

allows a compiler to reason about these ordering relationships and to detect inconsistencies in

the definition.’[6].

This model serves as a good implementation model.

5.2.9 Rendezvous models

In a rendezvous model, the arcs represent sequences of atomic exchanges of data between

sequential processes, and the bubbles presents the processes. [25]. Examples are Hoare’s CSP

and Milner’s CCS. This model of computation has been realized in a number of concurrent

languages, like Lotos and Occam. [Guus: based on algebra? How is timing handled?]

5.3 Comparison

[7] also made a comparison of various computational models.

20

Table 5.1: The main characteristics of the models of computation described in this Chapter.

Computational model Main application Timing Modus
Differential Equations ? ? ?
Difference Equations ? ? ?
Kahn Process Net-
works

? ? ?

SDF ? No explicit timing Synchronous
ADF ? No explicit timing Asynchronous
Discrete-event models ? Globally sorted

events with time
tag

?

Petri Nets ? No explicit tim-
ing. Just order of
transitions[7]

Asynchronous

Synchronous/reactive
models

? No explicit timing Synchronous

Rendez-vous ? Atomic events
along line of
time[7]

Asynchronous

21

Chapter 6

Heterogeneous systems

Heterogeneous systems are systems that allow more than one computational model in

a system to be used. Experience suggest that several MoC are required for the design of a

complete system.[6]. A nice illustration of the need for multiple computational models can be

found in [27]:

[Guus: how can you determine system behaviour for these types of systems? Things like

deadlocks, lifelock, timing...]

6.1 Example: internal combustion engine

Figure 6.1: An internal combustion engine is made up of several parts that should be modelled
by different MoCs.

22

A cylinder of an internal combustion engine has four working phases: intake, compress,

explode, and exhaust. The engine generates torque that drives the power train and the car body.

Depending on the car body dynamics, the fuel and air supply, and the spark signal timing, the

engine works at different speeds, and thus makes phase transitions at various time transitions.

The job of the engine controller is to control the fuel and air supplies as well as the spark signal

timing, corresponding to the drivers demand and available sensor information from the engine

and the car body.

The engine and the car body in this example are mechanical systems, which are naturally

modelled using differential equations. The four phases of the engine can be modelled as a finite

state machine, with a more detailed continuous dynamics for the engine in each of the phases.

While all the mechanical parts interact in a continuous-time style, the embedded controller,.

which may be implemented by some hardware and software, works discretely.

Additionally, sensor information and driver’s demands may arrive through some kind of

network. The controller receives this information, computers the control law, controls the air

and fuel values, and produces spark signals, discretely. So, we want to use a model that is

suitable for handling discrete events for the network and the controller.

In this very common example, we have seen both continuous-time models and several

discrete models: finite state-machines, discrete events, and real-time scheduling.

It’s common for a specification language to allow more than 1 model of computation.

However this does not always mean that this allows for suitable high-level mixture of 2 models.

An imperative language can be used to implement for example a dataflow MoC[6]. It is obvious

that low-level languages such as VHDL are able to implement different models of computation.

However, their lack of abstraction disqualifies them as candidates for modelling combined com-

putational model-systems because it leaves programmers no freedom to make trade-offs between

programmability, utilization of resources and silicon area.

23

6.2 Old tools revived

Many languages and tools that were developed based on a single model start to embrace

other models [15]. The downside of such large languages with multiple MoC’s is (according

to [6]) that formal analysis may become very difficult. It compromises the ability to generate

efficient implementations or simulations and makes it more difficult to ensure that a design is

correct. It precludes such formal verification techniques as reachability analysis, safety analysis

and liveness analysis.

Most complex system are a combination of data- and control-flow oriented parts. Varea[46]

proposes a classification according to the following taxonomy:

(1) Models originally developed for control-dominated embedded systems and later ex-

panded to include data-flow (these models will be called MCD).

(2) Models developed in a data-dominated basis extended to support also control flow (re-

ferred to as MDC

(3) Unbiased model developed specifically to deal with combined control/data-flow interac-

tions (Mb)

[Guus: use this classification!]

As noticed in Chapter 3.3.4 the modelling of hybrid digital-analog systems is a related

field that is gaining more attention too. Also in this field there are existing tools that are

extended with functionality to deal with hybrid modelling. Examples of this are VHDL-AMS.

6.3 New heterogeneous tools

However also new frameworks have been developed that took multiple models of com-

putations into their design from the beginning. A framework is a software architecture that

specifies the possible interactions of componenets, provides a set of services that components

can use and may have a set of formal properties for the system.

24

In this Chapter we’ll see a few of the most famous modelling methods and a few that

have been selecting because they are special. [Yes, this should be a different sentence].

6.4 Ptolemy II

The Ptolemy project studies heterogeneous modelling, simulation and design of concur-

rent systems, where the focus is on embedded systems.[11].

The primary investigator of the Ptolemy project is Edward A. Lee. In 1991 he presented

a paper[5] that described the Ptolemy system. This system has been in use for many years, and

it’s now succeeded by a new version, Ptolemy II.

The Ptolemy II software environment provides support for hierarchically combining a

large variety of models of computation and allows hierarchical nesting of models.[15]. It combines

the wish for a homogeneous and thus predictable model with the desire to mix partial models

of different kinds in a common heterogeneous model by hierarchically nesting sub-models of

potentially different kinds.

A very good description of how this hierarchical mixed approach works in practice can

be found in [28].

Figure 6.2: Example of a hierarchical specification of a systems using two (possibly different)
Models of Computation. The directors controls the flow of control and data in such a MoC.

Ptolemy II is a component-based design methodology. The components in the model are

25

called actors. A model is a hierarchial composition of actors. The atomic actors, such as A1,

only appear at eh bottom of the hierarchy. Actors that contain other actors, such as A2, are

composite. A composite actor can be contained by another composite actor.

Atomic actors contain basic computation, from as simple as an AND gate to more complex

as an FFT. Through composition, actors that perform even more complex functions can be built.

Actors have ports, which are their communication interfaces. For example in Figure 6.2, A5

receives data from input ports P3 and P4, performs its computation, and sends the result to

output port P5. A port can be both an input and an output. Communication channels among

actors are established by connecting ports.

The possibility to have various MoC’s can be found in the director. A director controls

the execution order of the actors in a composite, and mediates their communication. In figure

1, D1 may choose to execuyte A1, A2 and A3 sequentially. Whenever A2 is executed, D2 takes

over and executes A4-A7 ascoordingly. A direcor uses receivers to mediate actor communication.

As shown in figure 2, one receiver is created for each communication channel; it is situated at

the input ports, although this makes little difference. When the produces actors sneds a piece of

data (a token) to the ouput port, the receiver decise how the transaction is completed. Within

a composte actor, the actors under the immediate control of a director interact homoheneously.

6.5 COSYMA

A bit older design method is COSYMA, ”CoSynthesis for Embedded Architectures”.

It was developed at the IDA, Germany. It covers the entire design flow, from specification,

to synthesis. The target architecture consists of a standard RISC processor, a fast RAM for

program and data with single clock cycle acceess time and an automatically generated application

specific co-processors. Communication between processors and co-processor takes place through

shared memory.

The system is designed in Cx. This is a C-extension with support for parallel processes

and timing constraints. The Cx specification is then converted into an Extended Syntax Graph

26

(ESG), the IDR. The ESG describes a sequence of declarations, definitions and statements and

is overlayed with the Data Flow Graph (DFG) containing information about data dependencies.

Research using COSYMA has been discontinued in 1999.

6.6 Simulink

Existing (commercial) tool. [27] calls it a framework. A modelling and simulation envi-

ronment for continuous-time dynamic systems with discrete events. It has been extended with

StateFlow[28].

6.7 *charts

Statecharts are essentially a combination of FSMs with a SR. The tools Statemate from

Ilogix uses statecharts as its control specification model.

A recent development is *Charts (pronounced Starcharts). TBD

[Guus: SOLAR here[8]]. Another model based on Finite State Machinbes is the CFSM

model. The communication primitive is called event.[7].

6.8 ForSyDe

An interesting method has been development by Sander and Jantsch[36, 37]. In their

model events are totally-ordered by their tags. Every signal has the same set of tags. Events with

the same tag are processed synchronously. There is a special value ⊥ (”bottom”) to indicate the

absence of an event. These are necessary to establish a total ordering among events. A system is

modelled by means of concurrent processes; it is a model based on the synchronous-assumption

(see Chapter 5.2.8).

Lu[29] shows how to transform a system specification described in ForSyDe into its hard-

ware and software counterparts. He does not provide a mixed implementation of HW and SW.

[Guus: why not per module possible to make this decision?]

27

The hardware version of the Digital Equalizer that Lu makes is described using behavioral

VHDL. The process are described using skeletons and these are then synthesized to VHDL code.

The process described is manual. The Haskell code turns into behavioral VHDL quite easily.

To generate (naturally sequential) C code an analysis phase is done to create a PASS.

[4] also investigated the design of a Digital Equalizer. They used a combination of SDL

and Matlab as their design languages.

SDL is used to model the control parts, Matlab is used for the DSP parts.

6.9 Moses framework

6.10 Polis

The Polis research project started in 1988 by the UC Berkeley. It is a design environment

for control-dominated embedded systems. It supports designers in the partitioning of a design

and in the selection of a micro-controller and peripherals.

The system specification language is Esterel, but a graphical specification can also be

given.

The generated software part consists of:

(1) the application that has been modelled in CFSMs

(2) a generated application-specific operating system for the selected processor

(3) the I/O drivers

Hardware is synthesized as well. The Polis environment provides an interface for verification

and simulation tools as well as an simulator.

A fundamental limitation of the Polis system is the MoC used, the Codesign Finite State

Machine (CFSM). A CFSM is an extended finite state machine that communicates with other

CFSMs asynchronously with unbounded delay and by means of events. The communication

model between CFSMs is not efficient in representing systems with intensive data processing,

28

since CFSMs communicate over channels with one-place buffers and have non-blocking write

communication semantics. Therefore, a buffer is overwritten every time the sender emits an

event before the receiver has consumed the previous event. This can be avoided either by

means of scheduling constraints or with a blocking write protocol: however, both mechanisms

often result in a loss of performance. This means that POLIS is mainly useful for control-

dominated embedded systems. Although the POLIS method allows performance-estimation for

the simple controller that is generated, estimation techniques for more complex processor models

are lacking[48].

The Polis project has led to a set of commercial tools called Felix in 1998. It allows

integration with Ptolemy, which makes it quite a powerful tool. [Guus: expand relationship

Felix, Polis, VCC and Metropolis].

6.11 Metropolis

6.12 Solar/Music

[8] describes a multi-language approach at the system level providing both system-level

refinement and high-level interfaces synthesis.

6.13 FunState/SPI Workbench

FunState is an internal design model based on functions driven by state machines[43]. It

is an enhancement of the older SPI Workbench[51].

The SPI Workbench [51] is based on intervals of system properties and is specifically

targeted to cosynthesis. Made for performance estimations. [Guus: Funstate = new version of

SPI workbench?]

29

Table 6.1: The main characteristics of systems described in this Chapter.

Model MoC based on Main application Target architecture Specification languages
*charts

COSYMA
ForSyDe
FunState FSM with functions
IRSYD Flow Charts

Metropolis
Polis CFSM Control-dominated Esterel, graphical

Ptolemy II Multiple MoC’s
SimuLink

SpecC

6.14 IRSYD

IRSYD[16] is an acronym that stands for Internal Representation for System Description.

It is thus an internal design representation language; not a complete method. However IRSYD

is fully defined and implemented (in C++).

It is quite ambitious in the sense that it claims to be able to be used for synthesis,

performance estimation, formal verification etc.

The basic idea behind IRSYD is a unified graph representation for control flow and data

flow. It is a Flow Chart extended to handle hierarchy, both structural and behavioral, different

data types and different communication mechanisms. A flow chart is an informal graphical

description of an algorithm built as a directed graph.

Unfortunately the work on this representation seems to have stopped. The latest papers

are from 1998. One of the authors of some papers about IRSYD, Axel Jantsch, is also working

on ForSyDe (see Chapter 6.8).

6.15 Comparison

[Guus: Add Varea’s comparison to the paper.] Most approaches described are component

based.

Not every approach that has been described support all the phases of Co-Design described

30

Table 6.2: The supported phases of the Co-Design development process.

Model Simulation Formal analysis and verification Synthesis
*charts

COSYMA
ForSyDe
FunState FSM with functions
IRSYD Flow Charts

Metropolis
Polis

Ptolemy II
SimuLink

SpecC

in Chapter 4. In Table 6.15 the supported steps are indicated.

31

Chapter 7

Discussion of hybrid models

7.1 Design-space exploration

Many parts in the design of embedded system require manual decisions, this remains

so when using Co-Design methods. The integration Co-Design offers is valuable because of

validation and easier synthesis of code from a model that allows hard- and software to be

generated.

Because of the complexity of most systems, optimal manual decisions are sometimes

not feasible. There are simply to many possibilities to consider. To use all of to potential

improvements that a later HW/SW partition decision allows, it is therefore very important

to reduce the user-decisions as far as possible. This has been recognized an there are various

methods for systematic design space exploration cite(cassidy). ”In order to perform rigorous

analysis and synthesis it is essential to prune the design space retaining only the most viable

alternatives.” In the past heuristics have been used to prune large design spaces. However,

due to the complex behavior and interactions in multi-modal systems it is difficult to come

up with effective heuristics. A better approach is to use constraints to explore and prune the

design spaces; constraint satisfaction can eliminate the designs that do not meet the constraints.

The pruned design space contains only the designs that are correct with respect to the applied

constraints. These designs can then be simulated, synthesized an tested.”[34].

32

7.2 Target architecture

When a Co-Design methodology allows for the generation of both software and hardware,

it must also generate the communication mechanisms between these two parts. This include the

operating system perhaps, and the device drivers of some sort.

O’Nils point out that very often off-the-shelf IP components are used in system design,

and that often a major part of the work will be in interfacing these IP components. Tools like

Polis are primarily designed for cases in which the whole design functionality is captured within

the tool’s enviroment and communication refined during system synthesis. That is, the device

drivers are generated together with the custom hardware and the operating system. However, if

users want tot use IP blocks and off-the-shelf operating systems they will face the same problems

that occur in manual design[35]. This has important implications for the commercial use of Co-

Design methods and design space exploration tools: if they don’t take into account off-the-shelf

IP components they are not suitable for many types of projects.

An extension to most Co-Design tools would be an explicit mapping between the IDR

and the target architecture. Keutzer et al. state: ”We actually believe that worrying about

HW-SW boundaries without considering higher levels of abstraction is the wrong approach.

HW/SW design and verification happens after some essential decisions have been already made,

and this is what makes the verification and the synthesis problem hard. SW is really the form

that a behavior is taking if it is ”mapped” into a programmable microprocessor or DSP. [...]

The origin of HW and SW is in behavior that the system must implement.”[22]. If this mapping

is recognized together and used in design-space exploration, a typical approach would be the

Y-Chart1 as proposed by Kienhuis[23] (see Figure 7.2).

1 This term is rather unfortunate, as there exists another Y-Chart in Co-Design. That one relates to the level
of abstraction of a system [Guus: TBD]

33

Figure 7.1: The Y-Chart approach[23].

7.3 Hierarchy/emergent behavior

’Brute-force composition of heterogeneous models may cause emergent behavior. Model

behavior is emergent if it is caused by the interaction between characteristics of different formal

models and was not intended by the model designer.’[15]

A common way to prevent unwanted emergent behavior is isolating various subcompo-

nents and letting these subcomponents work together in a hierarchical way. Hierarchical in

the sense of a containment relation, where an aggregation of components can be treated as a

(composite) component at a higher level. In general, hierarchies help manage the complexity of

a model by information hiding – to make the aggregation details invisible from the outside and

thus a model can be more modularized and understandable[27].

’Note that in Ptolemy, models of computations are mixed hierarchically. This means that

two MoC’s do no interacts as peers. Instead, a foreign MoC may appear inside a process. In

the old version of Ptolemy, such was process is called a wormhole. It encapsulates as subsystem

specified using one MoC within a system specified using another. The wormhole must obey the

semantics of the outer MoC at its boundaries and the semantics of the inner MoC internally.

Information hiding insulates the outer MoC from the inner one.’ [6]. This approached of worm-

holes was a bit biased towards data-flow computational models. In Ptolemy II it was replaced

34

with opaque composite actors[11].

There are other ways to mix models of computation too. Statemate uses views. [Guus:

are these views related to what Jantsch[19] calls analytical slicing into domains?]

7.4 Synthesizing code

A discrete-event model of computation is well suited for generating hardware. It is not

very suitable to generate (sequential) software[6] (p. 131). ’This is for example why VHDL

simulate the the designer by taking so long. A model that heavily uses entities communicating

through signals will burden the discrete-event scheduler and bog down the simulation. Thus, a

specification built on discrete-event semantics is a poor match for implementation is software.

By contrast, VHDL that is written as sequential code runs relatively quickly but may

not translate well into hardware. The same goes for C: it runs very quickly and is well suited

for software, but not for specifying hardware. [Guus: Expand this. What are the problems with

C?]

It is possible to conclude that the two issues found in this paper are closely related. If you

want a single specification language you’ll loose in the paradigm-shift. It is hard to imagine an

(efficient) language that allows both control- and dataflow types to be presented and generate

efficient code for it for all types of applications. On the other hand, if you don’t mind taking

the HW/SW decision earlier there are very good integrated tools and frameworks that allow

working with both parts of your system in a systematic way. Code generation (or hardware

generation) is easier in this style.

[23] also realizes this. He says: ”the refinement approach has proven to be very effective

for implementing a single algorithm into hardware. The approach is, however, less effective for

a set of applications. In general, the refinement approach lacks the ability to deal effectively

with making trade-offs in favor of the set of applications.”

There is also a mixed form possible. This mixed form would not be applicable for every

type of system, but only for a subset. An example of such an approach is ForSyDe. They allow

35

the specification of both control- and dataflow parts in a single language. They have shown to

be able to generate (reasonably) efficient code. A thing to investigate would be for what types

of systems this kind of Co-Design approaches are suitable, and for which not.

Dataflow and finite-state models of computation have been shown to be reasonably re-

targettable. Hierarchical FSMs such as Statecharts can be used effectively to design hardware

or software. It has also be shown that a single dataflow specification can be partitioned for

combined hardware and software implementation.’[6] [Guus: very interesting, expand this].

The difference made between heterogeneous and homogenous modelling seems to be a

bit to blunt. Some authors make it look like heterogenous modelling is the only answer possible

because that’s the only type of method that allows all kinds of systems to be modelled. However,

some homogenous modelling tools allow for a subset of applications to be modelled. This way

–for specific applications– the benefits of having a single language will be available without a

drawback in the paradigm-shift. This relates to the conventional wisdom that high performance

while minimizing resources needed (or time needed) can be obtained by matching the architecture

to the algorithm[34].

The main difference in the two approaches in my view is that the true heterogenous style

(like Ptolemy II) allow for more types of MoC’s, and are better capable of working with new

MoC’s. The other option promises a closer integration though.

7.5 Paradigm shift

It has been recognized in literature that there is an important relationship between the

model of computation and the target-architecture. Kienhuis et all.[23] speak in this context

about a mapping between a model of computation and the architecture: ”In mapping we say

that a natural fit exist if the model of computation used to specify applications matches the

model of architecture used to specify architectures and that the data types used in both models

are similar.”

Algebraic formal methods are not capable of dealing with the complexity of complete

36

(embedded) systems design technologies. The algebra is not sophisticated enough and the design

technologies are not suited toward formal verification. For the description of MoC’s[26] and the

interactions between them formal methods have been very valuable.

37

Chapter 8

Conclusions

A synergistic approach of hardware and software and taking design to higher level are

nowadays recognized as mandatory to keep up with the increasing complexity of embedded

systems design.

Most Co-Design tools make use of an internal representation for the refinement of the

input specification and architectures[20]. Many such internal representations exist. They are all

based on one or more Computational Models.

Experiments with system specification languages have shown that there is not a unique

universal specification language to support the whole design process for all kinds of applications.

[20].

The computation model to use is first of all dependent on the type of problem to be solved.

There is a definite trend towards heterogenous modelling systems that allow more mixed types

of systems to be modelled.

Many researchers are doubting whether a grand unified approach will work. Specifically

the group of Edward A. Lee (who created the Ptolemy system) has doubt about this[6]. In order

to be sufficiently rich to encompass the varied semantic models of the competing approaches,

they become unwieldy, too complex for formal analysis and high quality synthesis. He claims

that generality can be achieved through heterogeneity, where more than model of computation

is used.

Ptolemy II seems to be a very mature tool, specifically the theoretical foundation of

38

mixing various computational models is well thought-out. However, it is mainly focussed towards

simulation.

[Guus: etc etc... this will take a lot of work!]

39

Bibliography

[1] R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivančić, V. Kumar, I. Lee, P. Mishra, G. Pappas,
and O. Sokolsky. Hierarchical modeling and analysis of embedded systems. Proceedings of
the IEEE, 91(1), January 2003.

[2] I. D. Bates, E. G. Chester, and D. J. Kinniment. A statechart based HW/SW codesign
system. In Proceedings of the Seventh International Workshop on Hardware/Software
Codesign (CODES-99), pages 162–166. ACMPress, May 1999.

[3] S. S. Bhattacharyya, R. Leupers, and P. Marwedel. Software synthesis and code generation
for signal processing systems. IEEE Transactions on Circuits and Systems, 47(9), Sept.
2000.

[4] P. Bjurus and A. Jantsch. Mascot: a specification and cosimulation method integrating
data and control flow. In Proceedings of the conference on Design, automation and test in
Europe, pages 161–168. ACM Press, 2000.

[5] J. Buck, S. Ha, E. Lee, and D. Messerschmitt. Ptolemy: a mixed paradigm simula-
tion/prototyping platform in c++. In Conference Proceedings C++ At 163 Work, 1991.

[6] W.-T. Chang, S. Ha, and E. A. Lee. Heterogeneous simulation – mixing discrete-event
models with dataflow. Journal of VLSI Signal Processing, 15:127–144, 1997.

[7] L. A. Cortés, P. Eles, and Z. Peng. A survey on hardware/software codesign representation
models. Technical report, Linköping University, June 1999.

[8] P. Coste, F. Hessel, and A. Jerraya. Multilanguage codesign using SDL and Matlab, 2000.

[9] S. Cotofana, S. Wong, and S. Vassiliadis. Embedded processors: Characteristics and trends.
Technical report, Delft University of Technology, 2001.

[10] J.-M. Daveau, G. F. Marchioro, and A. A. Jerraya. VHDL generation from SDL specifi-
cation. In C. Delgado Kloos and E. Cerny, editors, Hardware Description Languages and
their Applications (CHDL ’97), Toledo, Spain, Apr. 1997. IFIP WG 10.5, Chapman and
Hall.

[11] J. Davis II, C. Hylands, J. Janneck, E. A. Lee, J. Liu, X. Liu, S. Neuendorffer, S. Sachs,
M. Stewart, K. Vissers, P. Whitaker, and Y. Xiong. Overview of the Ptolemy project.
Technical report, University of California at Berkeley, Mar. 2001.

[12] S. A. Edwards. The Specification and Execution of Heterogeneous Synchronous Reactive
Systems. PhD thesis, University of California, Berkeley, 1997.

[13] S. A. Edwards. Design languages for embedded systems. Technical report, Synopsys, Inc.,
2001.

40

[14] M. Eisenring, J. Teich, and L. Thiele. Rapid prototyping of dataflow programs on hard-
ware/software architectures. In Proc. of HICSS-31, Proc. of the Hawai’i Int. Conf. on Syst.
Sci., pages 187–196, Kona, Hawaii, January 1998.

[15] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs,
and Y. Xiong. Taming heterogeneity - the Ptolemy approach. In Proceedings of the IEEE,
2002.

[16] P. Ellervee, S. Kumar, A. Jantsch, B. Svantesson, T. Meincke, and A. Hemani. Irsyd: An
internal representation for heterogeneous embedded systems. Proceedings of the NORCHIP
Conference, Lund, Sweden, Nov. 1998.

[17] A. Fin, F. Fummi, M. Martignano, and M. Signoretto. SystemC: A homogenous environ-
ment to test embedded systems. In Proceedings of the Ninth International Symposium on
Hardware/Software Codesign (CODES-01), pages 17–22. ACMPress, Apr. 2001.

[18] D. Gajski and F. Vahid. Specification and design of embedded software-hardware systems.
IEEE Design & Test of Computers, 12(1), 1995.

[19] A. Jantsch, S. Kumar, and A. Hemani. The Rubgy meta-model. Technical report, Royal
Institute of Technology, Mar. 2000.

[20] A. A. Jerraya, M. Romdhani, P. L. Marrec, F. Hessel, P. Coste, C. Valderrama, G. F.
Marchioro, J. M. Daveau, and N.-E. Zergainoh. Multilanguage Specification for System
Design and Codesign, chapter 5. Kluwer academic Publishers, 1999.

[21] Y. Jiang and R. K. Brayton. Software synthesis from synchronous specifications using logic
simulation techniques. In Proceedings of the 39th conference on Design automation, pages
319–324. ACM Press, 2002.

[22] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and A. L. Sangiovanni-Vincentelli. System
level design: Orthogonalization of concerns and platform–based design. IEEE Trans. on
CAD, 2000.

[23] B. Kienhuis, E. F. Deprettere, P. van der Wolf, and K. Vissers. A methodology to design
programmable embedded systems — the Y-chart approach. Lecture Notes in Computer
Science, 2268:18–??, 2002.

[24] Y. Kim, K. Kim, Y. Shin, T. Ahn, and K. Choi. An integrated cosimulation environ-
ment for heterogeneous systems prototyping. Design Automation for Embedded Systems,
3(2/3):163–186, Mar. 1998.

[25] E. A. Lee. System-level design methodology for embedded signal processors. Technical
Report F33615-93-C-1317, University of California at Berkeley, 1997.

[26] E. A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing models of computa-
tion. IEEE Transactions on Computer Aided Design, 17(12):1217–1229, Dec. 1998.

[27] J. Liu. Responsible Frameworks for Heterogenous Modeling and Design of Embedded
Systems. PhD thesis, University of California at Berkeley, 2001.

[28] X. Liu, J. Liu, J. Eker, and E. A. Lee. Heterogeneous modeling and design of control
systems. Software-Enabled Control: Information Technology for Dynamical Systems, 2002.
To appear.

[29] Z. Lu. Refinement of a system specification for a digital equalizer into HW and SW imple-
mentations. January, Royal Institute of Technology, 2002.

41

[30] W. H. Mangione-Smith, B. Hutchings, D. Andrews, A. DeHon, C. Ebeling, R. Hartenstein,
O. Mencer, J. Morris, K. Palem, V. K. Prasanna, and H. A. Spaanenburg. Seeking solutions
in configurable computing. IEEE Computer, 30(12):38–43, December 1997.

[31] C. A. Marcon, F. P. Hessel, A. M. Amory, L. H. L. Ries, F. G. Moraes, and N. L. V.
Calazans. Prototyping of embedded digital systems from SDL language: a case study. In
Proc. Seventh Annual IEEE International Workshop on High Level Design Validation and
Test, 2002. To appear.

[32] G. D. Micheli and R. K. Guipta. Hardware/software co-design. In Proceedings of the IEEE,
volume 85, pages 349–365, Mar. 1997.

[33] V. J. Mooney III and G. De Micheli. Real time analysis and priority scheduler generation
for hardware-software systems with a synthesized run-time system. In Proceedings of the
1997 IEEE/ACM international conference on Computer-aided design, pages 605–612. IEEE
Computer Society, 1997.

[34] S. Neema. System-level synthesis of adaptive computing systems, Mar. 2000.

[35] M. O’Nils. Specification, Synthesis and Validation of Hardware/Software Interfaces. PhD
thesis, Royal Institute of Technology, Sweden, 1999.

[36] I. Sander and A. Jantsch. System synthesis based on a formal computational model and
skeletons. In Proceedings of the IEEE Computer Society Annual Workshop on VLSI, 1999.

[37] I. Sander and A. Jantsch. System synthesis utilizing a layered functional model. In
Proceedings of the Seventh International Workshop on Hardware/Software Codesign
(CODES-99), pages 136–140. ACMPress, May 1999.

[38] S. Schulz and J. Rozenblit. Concepts for model compilation. Proceedings of ICDA
Conference, 2000.

[39] F. Slomka, M. Dörfel, and R. Münzenberger. Generating mixed hardware/software sys-
tems from SDL specifications. In Proceedings of the Ninth International Symposium on
Hardware/Software Codesign (CODES-01), pages 116–121. ACMPress, Apr. 2001.

[40] T. M. Stauner. Systematic Development of Hybrid Systems. PhD thesis, Institut für
Informatik der Technischen Universität München, 2001.

[41] R. Tessier and W. Burleson. Reconfigurable computing for digital signal processing: A
survey. Journal of VLSI Signal Processing, 28(1):7–27, June 2001.

[42] The Economist. Bespoke chips for the common man. The Economist, Dec. 2002. 12th.

[43] L. Thiele, K. Strehl, D. Ziegenbein, R. Ernst, and J. Teich. FunState - an internal design
representation for codesign. In ICCAD’99, the IEEE/ACM Int. Conf. on Computer-Aided
Design, pages 558–565, San Jose, U.S.A., Nov. 1999.

[44] D. E. Thomas, J. K. Adams, and H. Schmit. A model and methodology for hardware-
software codesign. IEEE Design & Test of Computers, Sept. 1993.

[45] J. van der Wateren and A. M. Bos. Real-time software testing throughout a projects life
cycle using simulated hardware. In Proceedings of the 5th International Workshop on
Simulation for European Space Programmes, Nov. 1998.

[46] M. Varea. Mixed control/data-flow representation for modelling and verification of embed-
ded systems. Technical report, University of Southampton, Mar. 2002.

[47] Various. VSI alliance deliverables document. Technical report, VSI Alliance, 1999.

42

[48] V. D. Živković and P. Lieverse. An overview of methodologies and tools in the field of
system-level design. Lecture Notes in Computer Science, 2268:74–??, 2002.

[49] W. Wolf. Computers as components: principles of embedded computing system design.
Academic Press, 2001.

[50] T.-Y. Yen and W. Wolf. Hardware-Software Co-Synthesis of Distributed Embedded
Systems. Kluwer Academic Publishers, 1996.

[51] D. Ziegenbein, K. Richter, R. Ernst, L. Thiele, and J. Teich. SPI- a system model for
heterogeneously specified embedded systems. IEEE Trans. on VLSI Systems, 2002.

43

Appendix A

Vocabulary

ASIC Application specific Integrated Circuit

FPGA Field-Programmable Gate Array (a specific type of PLD)

FSM Finite State Machine (see Chapter 5.2.1)

IDR Internal Design Representation

IP Intellectual Property. Used in the field of embedded sys-

tems to refer to existing modules (from other vendors)

that can be used to build a system

MoC Model of Computation, or computational model

PLD Programmable Logic Device

VHDL A language to describe layout and or behaviour of hard-

ware. Comparable to a program-language for software

