January 21, 2003
Co-Design for Chess-iT (draft)
by

G. Bosman

Supervisors:
Dr. Ir. A. M. Bos (Chess-iT)
Ing. P. G. C. Eussen (Chess-iT)

Dr. Ing. R. Lammel (Vrije Universiteit)

3

vrije Universiteit amsterdam

ii

Contents
Chapter

1 Introduction 1
1.1 Traditional design 1
1.2 Programmable logic 2
1.3 COonCurrency v v v v i i i e e e 3
1.4 Outline e 3

2 Assignment 4
3 Co-Design 5
3.1 Related approaches 5
3.1.1 Software intheloop 5

3.1.2 Chuncky function unit architecture 5

3.1.3 Reconfigurable hardware 6

3.2 Modelling and specification 6
3.2.1 Modelling L 6

3.2.2 Validation 7

3.2.3 Synthesis 8

4 System Level Modelling 9
4.1 Homogenous modelling L L 9

4.2 Heterogeneous modelling L oL o 10

4.3

4.4

4.5

4.6

4.2.1 Co-simulation vs. compositioning oL
Concurreny or: Dataflow vs. Control flow oriented
Hierarchy e
Communication L e

Synchronization Lo

Computational Models

5.1 Properties e
5.2 Imperative models
5.3 Differential Equationso oo
5.4 Difference Equations oL o
5.5 Process networks and dataflow L Lo
5.6 Discrete-event modelso
5.7 Petri Nets o e
5.8 Synchronous models Lo
5.9 Rendezvousmodels L
5.10 Finite-state machines L Lo
511 Comparison

Hybrid systems

6.1

6.2

6.3

6.4

6.5

6.6

6.7

Moses framework
Solar/MUSiC v v o
The SPI Workbench
Emergent behavior L oL o

On synthesizing code oL

iii

10

11

11

11

11

12

12

12

12

13

13

13

13

14

14

15

15

16

7 Languages
7.1 System C oL
7.2 VULCAN/HardwareC
7.3 Polis/Esterel
T4 SDL . . . e
7.5 Haskell e

7.6 VHDL e

8 Case Studies
8.1 Method A: ForSyDe
8.1.1 Digital Equalizer
8.2 Method B: SDL and Matlab

8.2.1 Digital Equalizer

9 Conclusions

Bibliography

iv

19

19

20

20

20

21

21

22

22

22

22

22

23

24

Chapter 1

Introduction

[Guus: Chess or Progress vision on growth of market of embedded computing here.] A
very important choice to be made when designing an embedded computer system is how to
divide the functionality of the system in hardware and software parts. Traditionally the choice
what to implement in hardware and what to implement in software is made early in the design
process. Both parts are then made in separate tracks by separate design teams. Goal of co-
design is to explore the whole design-space to be able to make well-informed decisions and to

be able to make this decision in a later phase in the design process.

1.1 Traditional design

Traditionally complex embedded systems are designed around a microprocessor in a Von
Neumann architecture. A traditional Von Neumann system is fundamentally a sequential sys-
tem. There is heavy optimalisation inside the CPU itself (pipelining etc) but ultimately the
commands are executed one by one. Systems based on microprocessors have several benefits.
Microprocessors are very well optimized and they allow design of families of product that can
be built. Such a family of product can provide various feature sets at a different price point and
can be extended to keep up with rapidly changing markets[29].

However, the fact that each command is executed sequentially leads to a fundamental
limitation. Backus [1978] calls this the ”von Neumann bottleneck.” He points out that this

bottleneck is not only a physical limitation, but has also served as an ”intellectual bottleneck”

in limiting the way we think about computation and how to program it.

ASICs are specialized chips, that are used for example for [...]. They are similar to
processors in the sense that they are also "hardwired’ solutions. It is very expensive to design
an ASIC, and a very slow process. Therefore, customizing an ASIC for a single application is
often not feasible. Early approaches in Co-Design therefore started with a components of high
granularity, such as ASIC and microprocessors.

If you'll design your whole system from the ground up (thus without using a microproces-
sor), or do this with a part of your system the optimalizations found in existing microprocessors
are not available. The designer will have to implement these. At the other side however there
is a huge potential gain because the layout of the hardware can in theory be tailored exactly
to the functional requirements. This can be extremely profitable, especially when the problem
to be solved is mainly parallel in character. Therefore an integrated design approach is very
interesting.

Often a mixture is used. Parts of the hardware are designed from scratch, but a micropro-
cessor is also used. This allows the system to benefit from the microprocessor’s specialization,

and for the parts of the system that benefit most of this a parallel implementations.

1.2 Programmable logic

Programmable logic devices (PLDs) are computer chips that can be programmed to im-
plement circuits requiring both combinational and sequential logic. Reconfigurable logic devices
are a class of programmable logic devices which may be reprogrammed as often as desired.
FPGA’s are a reconfigurable logic devices that are becoming very popular[7]. Three direct
benefits of the reconfigurable approach can be recognized: specialization, reconfigurability and
parallelism[26] [Guus: use more of Tessier on future developments [26]]. FPGA’s shorten the
development cycle dramatically and are much cheaper to use too. This allowed research to
Co-Design to increase a lot, and also consider more fine-grained approaches.

Obviously designing hardware and software integrated is an extremely complex task

with many aspects. There is a wide range of architectures and design methods so the hard-
ware/software co-design problem is treated in many different ways.

In my thesis I’ll investigate what methods exists that comply with the Chess business.
I'll compare them with each other. I’ll also investigate the problem of the paradigm shift (or
the prevention of this) when designing parallelism in a high-level language. Ideally the resulting
hard- and software description should be parallel in nature.

Many languages exist that are C-like, academic languages exist, each with a different
focus. In this paper I'll give an overview of the field and indicate the open issues. I'll try to

answer to question which languages is suitable for which problem.

1.3 Concurrency

Fundamental to embedded software is the notion of concurrency. There is a lot of research
done on compiling concurrent languages into sequential code that can be run on a microprocessor,
see for example [17]. For this thesis however it is more interesting to see what happens when

this paradigm-shift does not have to be made.

1.4 Outline

First we’ll look at the definition of Co-Design and the problems it tries to solve. In
Chapter 4 the different types of approaches are described, and which classifications can be
made. It turns out that the paradigms, the computational models, are very important. Chapter
5 deals with this.

A single paradigm approach has serious disadvantages so various hybrid models have
been proposed in literature. These will be described in Chapter 6, whereas in Chapter 7 existing
projects and models will be described and analyzed using the classifications and ideas found in
the first part. Finally we’ll look into a few case studies in Chapter 8 to get a better view of how

the multi-paradigm modelling works and how well it can be applied.

Chapter 2

Assignment

”To investigate various development methods and to investigate how an integrated ap-
proach of HW/SW design can improve system development at Chess.”

I'll give a thorough introduction to the field of codesign. and how this could support the
design of programmable hardware such as FPGA’s.

I will investigate the relevance and relationships between these specification and design
languages in the track from specification to implementation. I'll research to which degree existing
development and implementation methods support compatible paradigms.

The focus in this internship will be on the shift of paradigms when traversing through

the various levels of detail.

Chapter 3

Co-Design

” A design methodology supporting the concurrent development of hardware and software
(co-specification, co-development, and co-verification) in order to achieve shared functionality
and performance goals for a combined system.” [Guus: found it on the internet, where is it from

exactly?]

3.1 Related approaches

3.1.1 Software in the loop

Some of the issues Co-Design tries to solve are also handled by 'Software-In-The-Loop’.
This is developing software in a virtual hardware environment. Although this easies the design

of software for hardware it does not allow the full improvements made possible by Co-Design.

3.1.2 Chuncky function unit architecture

"The configurable computing community is divided into two camps, according to the level
of abstraction provided by the programmable hardware. This thesis deals with the hardware
on a very fine level of granularity: digital circuits are translated into netlists, which are com-
posed of logic gates and flip-flop. However in the second camp are the architecture based on
”chunky” function units suchs as complete ALU’s and multipliers. There architectures limit
the programmable hardware to the interconnect among the function units, but implement those

units in much less IC area.” [22]

3.1.3 Reconfigurable hardware

Reconfigurable systems exploit FPGA technology, so that they can be personalized after
manufacturing to fit a specific application. The operation of reconfigurable systems can either
involve a configuration phase followed by an execution phase or have concurrent (partial) con-
figuration and execution.[23]. The major co-design problem in this type of systems consists of
identifying the critical segments of the software programs and compiling them efficiently to run

on the programmable hardware. This is a different field and will not be treated in this thesis.

3.2 Modelling and specification

There are several tasks that must be performed to create a system-level design. To
comprehend the benefits of various Co-Design technologies it is important to understand how
the design process works.

The co-design system design process for embedded systems includes modelling, validation,
and implementation[23]. These processes are fundamental steps in any methodology aimed to

design an embedded system.

3.2.1 Modelling

"There is a subtle relationship between the specification of a system and the modelling of
a system. An executable specification, for example, is also a model of an implementation. The
difference is in emphasis. A specification describes the functionality of a system, and may also
describe one or more implementations. A model of a system describes the functionality. In a
specification it is important to avoid over-specifying the design, to leave implementation options
open. In a model, often the key criteria are precision, simplicity and efficient simulation. A
model should be the most abstract model that represents the details being tested.’[4].

Specification is closer to the problem level, at a higher level of abstraction, and uses one
or more models of computation. A Specification undergoes a synthesis process (which may be

partly manual) that generates a model of an implementation. That model itself may contain

multiple models of computation.
The outcome of the modelling process is the internal design representation (IDR). There

is a trade-off between scalability and expressiveness in this IDR[28]

3.2.1.1 Hardware/software Partitioning

[Guus: should be somewhere else]. "The partition of a system into hardware and software
is of critical importance because it has a huge impact on the cost/performance characteristics of
the final design. In the case of embedded systems, a hardware/software partition represents a
physical partition of system functionality into application-specific hardware and software execut-
ing on one (or more) processor(s).’[23]. When considering general purpose computing systems,
a partition represents a logical division of system functionality, where the underlying hardware
is designed to support the software implementation of the complete system functionality. This
division is elegantly captured by the instruction set. Thus instruction selection strongly affects
the system hardware/software organization.

Obviously is important to look at the architectural organization of the system. Although
it is possible to generate a complete system using only FPGA’s, it is very common to use a

combination of 1 (or more) processors with dedicated hardware. This is called coprocessing[23]

3.2.2 Validation

Through the validation process, the desinger achieves a reasonable level of confidence
about how much of the original embedded system design will be n fact reflected in the final

implementation.[28]. There are 3 three methods for validation:

(1) Simulation

(2) Prototyping

(3) Formal Verification

There has been a lot of research in the simulation of heterogeneous hardware/software
systems [28, 18, 4]. Formal verification allows for a more thorough test of the embedded system

behavior (maximum behavioral coverage) by means of logics.

3.2.3 Synthesis

The final stage in the development of an embedded system is the synthesis process. In the
phase architectural information is taken into account. Varea[28] calls this a merger between the
IDR with the technology library. It is important that the intermediate IDR or specification is
too operational (influenced by the current technology), it will bias the design towards a specific
architecture.

On the lowest level, FPGA’s can be used to implement SM’s, datapaths and nearly any
digital circuit. The outcome of the synthesis process is a final implementation of the embedded

system.

Chapter 4

System Level Modelling

Mooney et al.[24]: Approaches to hardware/software co-design of embedded systems can
be differentiated in several ways. One way is to consider the system-level specification, which
is either homogeneous (i.e., in a single specification language) or heterogeneous (i.,e. involving
multiple modelling paradigms). Another way is to distinguish how the CAD tool partitions the

system specification: fine-grained or coarse-grained.

4.1 Homogenous modelling

Homogeneous modelling implies the use of single specification language for the modelling
of the overall system. Lee[19] calls this the ’grand unified method’. Co-design starts with a
global specification given in a single language. This specification may be independent of the
future implementation and the partitioning of the system into hardware and software parts. In
this case co-design includes a partitioning step aimed to split this initial model into hardware and
software. The outcome is an architecture made of hardware processors and software processors.
The is generally called a virtual prototype and may be given in a single language or different
languages. [16]. Lee[19] sees as a big problem that a homogenous approach imposes a model of

computation which might be good for a subset of systems but bad for others.

10

4.2 Heterogeneous modelling

Heterogeneous modelling allows the use of specific languages for the hardware and soft-
ware parts. The co-design starts with a virtual prototype where the hardware/software parti-
tioning is already made. Here the emphasis is on the integral designing of the parts to make
sure the overall system has the required properties. The key issues are validation and interfacing
[16]. A lot of research is done on the integration of different system parts tat enables system

optimization across language boundaries. [this sentence from the SPT Workbench].

4.2.1 Co-simulation vs. compositioning

[6] differences between 2 different types of heterogenous modelling. The compositional
approach aims at integrating the partial specification of sub-systems into a unified representation
which is used for the verification and design of the global behavior. Examples are Polis, Javatime
and SpecC.

The cosimulation-based approach consists in interconnecting the design environments
associated to each of the partial specifications. Like its names suggests, with co-simulation the
software parts and the hardware components of an system and their interactions are simulated
in one simulation. It does not provide such a deep integration as compositioning does however
it does allow for modular design. Communication is often done using a cosimulation bus, that
is in charge of transferring data between the different simulators.

The Cosimulation-field is reasonably well established. Sometimes cosimulation is used to
simulate the behaviour of a system consisting of 2 models: the hardware and the software, and
sometime it is used to model on a more abstract level where the hardware vs software decision
has not been made yet.

It is good to note that the hardware is often simulated (although often not real-time, as
it’s just a simulation). However there has also been some research in replacing the hardware

simulator with an FPGA (or multiple FPGA’s) that simulate the real target hardware[18].

11

4.3 Concurreny or: Dataflow vs. Control flow oriented

There are languages that are designed to describe dataflow oriented systems (ie DSPs) and
there are models more suitable for control-flow systems. [Guus: what exactly is the difference].
However this approach seems to be not to good as there are many systems that are
not easily put in either one category. Most complex system are a combination of data- and

control-flow oriented parts.

4.4 Hierarchy

Used for dealing with complexity. (Also called layering)

4.5 Communication

There are two basic models for communicaton, message passing and shared memory. Or

Remote Procedure Calls.

4.6 Synchronization

There are 2 syncrhonization modes: synchronous and asynchronous.

12

Chapter 5

Computational Models

All Co-Design systems are based on a computational model, or combine a few of them.
A computational model is a formal, abstract definition of a computer. It describes the
components in a system and how they communicate and execute. Several models exists. There

are a number of authors who made an overview of various development methods, i.e. [30], [16].

5.1 Properties

[Guus: here explain what I want to find about of the models]. e, timing, hierarchy.] An
essential difference between concurrent models of computation is their modelling of time. [19]
(page 11). Lee[20] proposed a mathematical framework to compare certain properties of models

of computation. This allows for a precise definition of the various computational models.

5.2 Imperative models

In an imperative model of computation, modules are executed sequentially to accomplish

a task.[4].

5.3 Differential Equations

These are often used to model mechanical dynamics, analog circuits, chemical pro-

cesses and many other physical systems. [11].TBD. When using real numbers as timew model,

13

continuous-timwe systems are active over the entire tim axis procvessing their input and pro-

ducing output.[25].

5.4 Difference Equations

Like differential equations, but discrete. TBD. These two are very important as they deal
with a very common type of signal from the outside world. Discrete-time systems can only react

to their input and produce new output at distinct, equidistant time instances. [25]

5.5 Process networks and dataflow

In a process network model of computation the arcs represent sequences of data values
(token) and the bubbles represent functions that map input sequences into output sequences.
Certain technical restriction are necessary to ensure determinacy.[19]. They are not suitable for

control-logic. [Guus: uitwerken wat voor soort data-flow modellen er allemaal bestaan.|

5.6 Discrete-event models

In a discrete-event system, modules react to event that occur at a given time instant and
produce other events either at the same time instant or at some futre time instant. Execution
is chronological.[4]. Time is an integral part of the model. Events will typically carry a time
stamp, which is an indicator of the time at which the event occurs within the model. A DE
simulator will typically maintain a global event queue that sorts events by time stamp. This

sorting can be computationally costly. [Guus: hard to simulate, nice in hardware].

5.7 Petri Nets

In the classical approach a Petri net is composed of 4 basic elements: a set of places, a
set of transition, an input function that maps transition to places, and an output function which
is also a mapping from transition to places. This is an well-understood modelling tool. Two

important features of Petri nets are its concurrency and asynchronous nature.[5].

14

5.8 Synchronous models

In synchronous languages, modules simultaneously react to a set of input events and in-
stantaneously produce output events. If cyclic dependencies are allowed, then execution involves
finding a fixed point, or a consistent value for all events at a given time instant.[4]

Very often real-time systems are specified by means of concurrent processes, which com-
municate asynchronously [15].

The synchrony hypothesis forms the base for the family of synchronous languages. It
assumes, that the outputs of a systems are synchronized with the system inputs, while the
reaction of the system takes no observable time. So time is abstracted away. The synchrony
hypothesis abstracts from physical time and serves as a base of a mathematical formalism. All
synchronous languages are defined formally and system models are deterministic.

'In synchronous languages, every signal is conceptually (or explicitly) accompanied by
a clock signal. The clock signal has meaning relative to other clock signals. It defines the
global ordering or events. Thus, when compariung two signals, the associated clock signals
indicate which events are simultaneous and which precede or follow others. A clock calculus
allows a compiler to reason about these ordering relationships and to detect inconsistencies in
the definition.’[4].

This model serves as a good implementation model.

5.9 Rendezvous models

In a rendezvous model, the arcs represent sequences of atomic exchanges of data between
sequential processes, and the bubbles presents the processes. [19]. Examples are Hoare’s CSP
and Milner’s CCS. This model of computation has been realized in a number of concurrent

languages, like Lotos and Occam. [Guus: based on algebra? How is timing handled?]

15

5.10 Finite-state machines

The classical FSM consists of a set of states, a set of inputs, a set of outputs, a function
which defines the outputs in terms of input and states and a next-state function.[5]. FSM are
excellent for control logic in embedded systems[19]. They can very well be formally analyzed
and it is relatively straightforward to synthesis code from this model. FSM have a number of
weaknesses. They are not very expressive, and the number of states can get very large even in
the face of only modest complexity. Is intended for control-oriented systems with relatively low
algorithmic complexity.

A number of variations has been proposed to overcome to weaknesses of the classical
FSM model. [Guus: SOLAR here[6]]. Another one is the CFSM model. It is based on FSMs

and the communication primitive is called event.[5]. See also paragraph 6.2.

5.11 Comparison

[5] also made a comparison of various computational models.

Computational model Clock Property X
Differential Equations ? ?
Difference Equations ? ?
Process networks and dataflow ? ?
Discrete-event models ? ?
Petri Nets Asynchronous ?
Synchronous/reactive models Synchronous ?
Rendez-vous ? ?
CFSM ? ?
SOLAR ? ?

16

Chapter 6

Hybrid systems

Hybrid systems are systems that allow more than one computational model in a system
to be used. Experience suggest that several MoC are required for the design of a complete
system.[4].

It’s common for a specification language to allow more than 1 model of computation.
However this does not always mean that this allows for suitable high-level mixture of 2 models.
An imperative language can be used to implement for example a dataflow MoC[4]. It is obvious
that low-level languages such as VHDL are able to implement different models of computa-
tion. However, their lack of abstraction disqualifies them as candidates for modelling combined
computational model-systems.

Many languages and tools that were developed based on a single model start to embrace
other models [11]. The downside of such large languages with multiple MoC’s is (according
to [4]) that formal analysis may become very difficult. It compromises the ability to generate
efficient implementations or simulations and makes it more difficult to ensure that a design is
correct. It precludes such formal verification techniques as reachability analysis, safety analysis
and liveness analysis.

However also new frameworks have been developed that took multiple paradigms into
their design from the beginning.

[Guus: this is an important chapter and I want to extend this a lot.]

17

6.1 Ptolemy II

The Ptolemy II software environment provides support for hierarchically combining a
large variety of models of computation and allows hierarchical nesting of models.[11]. It combines
the wish for a homogeneous and thus predictable model with the desire to mix partial models
of different kinds in a common heterogeneous model by hierarchically nesting sub-models of

potentially different kinds.

6.2 *charts

Statecharts are essentially a combination of FSMs with a SR. The tools Statemate from
Tlogix uses statecharts as its control specification model.

A recent development is *Charts (pronounced Starcharts). TBD.

6.3 Moses framework
6.4 Solar /Music

[6] describes a multi-language approach at the system level providing both system-level

refitment and high-level interfaces synthesis.

6.5 The SPI Workbench

The SPI Workbench citeErnst is based on intervals of system properties and is specifically

targeted to cosynthesis.

6.6 Emergent behavior

"Brute-force composition of heterogeneous models may cause emergent behavior. Model
behavior is emergent if it is caused by the interaction between characteristics of different formal
models and was not intended by the model designer.’[11] 'Note that in Ptolemy, models of

computations are mixed hierarchically. This means that two MoC’s do no interacts as peers.

18

Instead, a foreign MocC may appear inside a process. In Ptolemy, such a process is called a
wormhole. It encapsulates as subsystem specified using one MoC within a system specified using
another. The wormhole must obey the semantics of the outer MoC at its boundaries and the
semantics of the inner MoC internally. Information hiding insulates the outer MoC from the
inner one.” [4]

There are other ways to mix models of computation too. Statemate uses views.

6.7 On synthesizing code

A discrete-event model of computation is well suited for generating hardware. It is not
very suitable to generate (sequential) software[4] (p. 131). ’'This is for example why VHDL
simulate the the designer by taking so long. A model that heavily uses entities communicating
through signals will burden the discrete-event scheduler and bog down the simulation. Thus, a
specification built on discrete-event semantics is a poor match for implementation is software.

By contrast, VHDL that is written as sequential code runs relatively quickly but may
not translate well into hardware. The same goes for C: it runs very quickly and is well suited
for software, but not for specifying hardware.

Dataflow and finite-state models of computation have been shown to be reasonably re-
targettable. Hierarchical FMS such as Statecharts can be used effectively to design hardware
or software. It has also be shown that a single dataflow specification can be partitioned for

combined hardware and software implementation.’[4] [Guus: very interesting, expand this].

19

Chapter 7

Languages

In this chapter I'll take a look at various Co-Design methods. Not only at academical
ones but also commercial ones.
A flat representation of a realistic embedded system would be too complicated to under-

stand in many situations. A layered approach is therefore mandatory.

7.1 System C

The SystemC language is becoming a new standard in the field and many designers
are starting to use it to model complex systems. It is an industrially used language, not an
academical one.

SystemC has been mainly adopted to define abstract models of hardware/software com-
ponents, since they can be easily integrated for rapid prototyping. However it can also be used
to describe modules at a higher level of detail, E.g., RT-level hardware descriptions and assembly
software modules. Thus it would be possible to imagine a SystemC-based design flow where the
system description is translated from one abstraction level to the following one by always using
SystemC representations.[1].

SystemC is basically C++ with an extra class-library.

20

7.2 VULCAN /HardwareC

Another C-type language is HandelC. This is an extension of C though, with real new
language constructs. It is influenced by the Occam language.

The input to the co-synthesis system is described in hardware description language called
HardwareC, a subset of C defined for hardware description. The architecture is limited to a one-
CPU-one-bus architecture. Type of the CPU must be a general purpose register machine with

one-level memory. [30]

7.3 Polis/Esterel

The Polis system developed at the university of California, Berekely, implements a
HW/SW Co-Design system using the CSFM model as its basis. The textual language used
in the Polis project is called Esterel. There is work in progress on a system that uses Statem-
ateTM, a graphical specification tool, to create specifications for the Polis system[14].

CSFM stands for 'Codesign Finite State Machine’. Is focussed on reactive systems or

control oriented applications[15]. Esterel is a synchronous language.

7.4 SDL

SDL (specification and description language) is intended for the modelling and simulation
of real-time, distributed and telecommunication systems and is standardized by the ITU. A sys-
tem described in SDL is regarded as a set of concurrent processes that communicate width each
other using signals. SDL supports different concepts for describing systems such as structure,
behavior and communication. SDL is intended for describing large designs at the system level.
There are two SDL formats, a textual and a graphical one.[8] In [8] a system is defined that
allows the generation of VHDL from system level specifications in SDL.

In [3] a case-study is presented that uses SDL modelling to generate a VHDL description.

It is then implemented in a FPGA.

21

7.5 Haskell

A Haskell program is a function, which consists of a composition of other functions.
Functions produce only one result, although this results can be a tuple consisting of values
multiple data-types.[15]. I.e. there are no side-effects.

A design method that uses Haskell is ForSyDe, see also Chapter8for a case study.

7.6 VHDL

[Guus: this section should be somewhere else, but where?] Hardware is usually described
using a gate-level netlist. This can be used to lay-out a printed circuit board or to program a
PLD (Programmable Logic Device). Within Chess FPGA’s are an example of PLD’s. FPGAs
are typically based op Look-Up Tables implemented using high-speed SRAM cells. The permit
the FPGA to implement any arbitrary function of the inputs. These netlists are very low-level
descriptions. Usually to describe hardware a Hardware Definition Language is used. The two
commonly used ones are VHDL and Verilog. Many methods for Co-Design focus on generating
C for the software part and VHDL for the hardware part. Verilog is a somewhat easier but less
rich in expression compared to VHDL.

VHDL was intended for use in the development, simulation, synthesis and testing of
digital circuits. There is a behavioral and a procedural variant of VHDL. The first one is not

deterministic when used to generate a netlist, the second one is.

22

Chapter 8

Case Studies

8.1 Method A: ForSyDe

8.1.1 Digital Equalizer

Lu[21] shows how to transform a system specification described in ForSyDe into its hard-
ware and software counterparts. He does not provide a mixed implementation of HW and SW.
The hardware version of the Digital Equalizer that Lu makes is described using behavioral
VHDL. The process are described using skeletons and these are then synthesized to VHDL code.
The process described is manual. The Haskell code turns into behavioral VHDL quite easily.

To generate (naturally sequential) C code an analysis phase is done to create a PASS.

8.2 Method B: SDL and Matlab

8.2.1 Digital Equalizer

[2] also investigated the design of a Digital Equalizer. They used a combination of SDL
and Matlab as their design languages.

SDL is used to model the control parts, Matlab is used for the DSP parts.

23

Chapter 9

Conclusions

Most Co-Design tools make use of an internal representation for the refinement of the
input specification and architectures[16]. Many specification languages exist.

Experiments with system specification languages have shown that there is not a unique
universal specification language to support the whole design process for all kinds of applications.
[16].

The fundamental computation model to use is first of all dependent on the type of problem
to be solved. However there is a definite trend towards heterogenous modelling systems that
allow more mixed types of systems to be modelled.

Many researchers are doubting whether a grand unified approach will work. Specifically
the group of Eward A. Lee (who created the Ptolemy system) has doubt about this[4]. In order
to be sufficiently rich to encompass the varied semantic models fo the competing approaches,
they become unwieldy, too complex for formal analysis and high quality synthesis. He claims
that generality can be achieved through heterogeneity, where more than model of computation
is used.

Ptolemy II seems to be the most mature of the tools investigate, specifically the theoretical
foundation of mixing various computational models is well thought-out.

[Guus: etc etc... this will take a lot of work!]

[1]

2]

3]

[4]

[9]

[10]

[11]

24

Bibliography

A. Fin, F. Fummi, M. Martignano, and M. Signoretto. SystemC: A homogenous environ-
ment to test embedded systems. In Proceedings of the Ninth International Symposium on

Hardware/Software Codesign (CODES-01), pages 17-22. ACMPress, Apr. 2001.

P. Bjurus and A. Jantsch. Mascot: a specification and cosimulation method integrating
data and control flow. In Proceedings of the conference on Design, automation and test in

Europe, pages 161-168. ACM Press, 2000.

C. A. Marcon, F. P. Hessel, A. M. Amory, L. H. L. Ries, F. G. Moraes, and N. L. V.
Calazans. Prototyping of embedded digital systems from SDL language: a case study. In
Proc. Seventh Annual IEEE International Workshop on High Level Design Validation and

Test, 2002. To appear.

W.-T. Chang, S. Ha, and E. A. Lee. Heterogeneous simulation — mixing discrete-event
models with dataflow. Journal of VLSI Signal Processing, 15:127-144, 1997.

L. A. Cortés, P. Eles, and Z. Peng. A survey on hardware/software codesign representation
models. Technical report, Linkping University, June 1999.

P. Coste, F. Hessel, and A. Jerraya. Multilanguage codesign using sdl and matlab, 2000.

S. Cotofana, S. Wong, and S. Vassiliadis. Embedded processors: Characteristics and trends.
Technical report, Delft University of Technology, 2001.

J.-M. Daveau, G. F. Marchioro, and A. A. Jerraya. VHDL generation from SDL specifi-
cation. In C. Delgado Kloos and E. Cerny, editors, Hardware Description Languages and

their Applications (CHDL ’97), Toledo, Spain, Apr. 1997. IFIP WG 10.5, Chapman and
Hall.

S. A. Edwards. The Specification and Execution of Heterogeneous Synchronous Reactive

Systems. PhD thesis, University of California, Berkeley, 1997.

S. A. Edwards. Design languages for embedded systems. Technical report, Synopsys, Inc.,
2001.

J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs,
and Y. Xiong. Taming heterogeneity - the Ptolemy approach. In Proceedings of the IEEE,
2002.

F. Slomka, M. Dorfel, and R. Miinzenberger. Generating mixed hardware/software sys-
tems from SDL specifications. In Proceedings of the Ninth International Symposium on

Hardware/Software Codesign (CODES-01), pages 116-121. ACMPress, Apr. 2001.

D. Gajski and F. Vahid. Specification and design of embedded software-hardware systems.
IEEE Design & Test of Computers, 12(1), 1995.

[14]

[15]

[16]

[17]

25

1. D. Bates, E. G. Chester, and D. J. Kinniment. A statechard based HW/SW codesign
system. In Proceedings of the Seventh International Workshop on Hardware/Software

Codesign (CODES-99), pages 162-166. ACMPress, May 1999.

I. Sander and A. Jantsch. System synthesis utilizing a layered functional model. In
Proceedings of the Seventh International Workshop on Hardware/Software Codesign

(CODES-99), pages 136-140. ACMPress, May 1999.

A. A. Jerraya, M. Romdhani, P. L. Marrec, F. Hessel, P. Coste, C. Valderrama, G. F.
Marchioro, J. M. Daveau, and N.-E. Zergainoh. Multilanguage Specification for System

Design and Codesign, chapter 5. Kluwer academic Publishers, 1999.

Y. Jiang and R. K. Brayton. Software synthesis from synchronous specifications using logic
simulation techniques. In Proceedings of the 39th conference on Design automation, pages
319-324. ACM Press, 2002.

Y. Kim, K. Kim, Y. Shin, T. Ahn, and K. Choi. An integrated cosimulation environ-
ment for heterogeneous systems prototyping. Design Automation for Embedded Systems,
3(2/3):163-186, Mar. 1998.

E. A. Lee. System-level design methodology for embedded signal processors. Technical
Report F33615-93-C-1317, University of California at Berkeley, 1997.

E. A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing models of computa-
tion. IEEE Transactions on Computer Aided Design, 17(12):1217-1229, Dec. 1998.

Z. Lu. Refinement of a system specification for a digital equalizer into HW and SW imple-
mentations. January, Royal Institute of Technology, 2002.

W. H. Mangione-Smith, B. Hutchings, D. Andrews, A. DeHon, C. Ebeling, R. Hartenstein,
O. Mencer, J. Morris, K. Palem, V. K. Prasanna, and H. A. Spaanenburg. Seeking solutions
in configurable computing. IEEE Computer, 30(12):38-43, December 1997.

G. D. Micheli and R. K. Guipta. Hardware/software co-design. In Proceedings of the IEEE,
volume 85, pages 349-365, Mar. 1997.

V. J. Mooney IIT and G. De Micheli. Real time analysis and priority scheduler generation
for hardware-software systems with a synthesized run-time system. In Proceedings of the

1997 IEEE/ACM international conference on Computer-aided design, pages 605-612. IEEE
Computer Society, 1997.

T. M. Stauner. Systematic Development of Hybrid Systems. PhD thesis, Institut fair
Informatik der Technischen Universitdt Miinchen, 2001.

R. Tessier and W. Burleson. Reconfigurable computing for digital signal processing: A
survey. Journal of VLSI Signal Processing, 28(1):7-27, June 2001.

D. E. Thomas, J. K. Adams, and H. Schmit. A model and methodology for hardware-
software codesign. IEEE Design & Test of Computers, Sept. 1993.

M. Varea. Mixed control/data-flow representation for modelling and verification of embed-
ded systems. Technical report, University of Southampton, Mar. 2002.

W. Wolf. Computers as components: principles of embedded computing system design.
Academic Press, 2001.

T.-Y. Yen and W. Wolf. Hardware-Software Co-Synthesis of Distributed Embedded

Systems. Kluwer Academic Publishers, 1996.

